Search results for "Quantum System"

showing 10 items of 266 documents

Distributed correlations and information flows within a hybrid multipartite quantum-classical system

2015

Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the presence of classical environments is central in the theory of quantum information. Tentative interpretations have been given by either the role of the environment as a control device or the concept of hidden entanglement. We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic tripartite system, already realized in the laboratory, made of two independent qubits and a random classical field locally interacting with one qubit alone. We study the dynamical relationship between the two-qubit entanglement and the genuine tripartite correlations of …

PhysicsQuantum PhysicsQuantum decoherenceInformation flowClassical environmentNon-MarkovianityFOS: Physical sciencesQuantum correlationQuantum PhysicsQuantum entanglementINFORMAÇÃO QUÂNTICASquashed entanglementMultipartite entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMultipartiteOpen quantum systems; Classical environment; Quantum correlations; Information flows; Non-MarkovianityOpen quantum systemQuantum mechanicsQubitStatistical physicsQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct

Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approach…

2009

The reduced dynamics of two interacting qubits coupled to two independent bosonic baths is investigated. The one-excitation dynamics is derived and compared with that based on the resolution of appropriate non-Markovian master equations. The Nakajima-Zwanzig and the time-convolutionless projection operator techniques are exploited to provide a description of the non-Markovian features of the dynamics of the two-qubits system. The validity of such approximate methods and their range of validity in correspondence to different choices of the parameters describing the system are brought to light.

PhysicsQuantum PhysicsQuantum decoherenceMarkov processFOS: Physical sciencesAtomic and Molecular Physics and OpticsOpen quantum systemRange (mathematics)symbols.namesakeClassical mechanicsQubitMaster equationsymbolsopen quantum system master equation techniquesStatistical physicsQuantum Physics (quant-ph)BosonQuantum computer
researchProduct

Non-Markovian dynamics of a single electron spin coupled to a nuclear spin bath

2008

We apply the time-convolutionless (TCL) projection operator technique to the model of a central spin which is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method for the coherences and populations of the central spin are determined analytically and compared with numerical simulations of the full von Neumann equation of the total system. The TCL approach is found to yield an excellent approximation in the strong field regime for the description of both the short-time dynamics and the long time behavior.

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSpin quantum numberElectronic Optical and Magnetic MaterialsOpen quantum systemspin systems non-Markovian dynamicsQuantum spin Hall effectQuantum electrodynamicsQuantum mechanicsQuantum spin liquidSpin (physics)Quantum Physics (quant-ph)
researchProduct

Collision-model-based approach to non-Markovian quantum dynamics

2013

We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and tra…

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsMarkov processFOS: Physical sciencesAtomic and Molecular Physics and Opticssymbols.namesakeExact solutions in general relativityClassical mechanicsSPINNon-Markovian open quantum systems collision modelsMaster equationDissipative systemsymbolsStatistical physicsQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct

Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle

2004

The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focussing on its non-Markovian regime. Both an analytic approach and a stochastic wave function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter and the Wigner function of the system.

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsTime evolutionFOS: Physical sciencesQuantum Physics16. Peace & justice01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasOpen quantum systemClassical mechanicsdynamics environments system-environment correlations0103 physical sciencesWigner distribution functionStatistical physicsQuantum Physics (quant-ph)010306 general physicsWave functionQuantumBrownian motionPhysical Review A
researchProduct

Master equations for correlated quantum channels

2012

We derive the general form of a master equation describing the interaction of an arbitrary multipartite quantum system, consisting of a set of subsystems, with an environment, consisting of a large number of sub-envirobments. Each subsystem "collides" with the same sequence of sub-environments which, in between the collisions, evolve according to a map that mimics relaxations effects. No assumption is made on the specific nature of neither the system nor the environment. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Linblad super-operator contains pairwise term…

PhysicsQuantum PhysicsQuantum decoherenceStatistical Mechanics (cond-mat.stat-mech)Lindblad equationFOS: Physical sciencesGeneral Physics and AstronomyMathematical Physics (math-ph)Settore FIS/03 - Fisica Della MateriaClassical mechanicsQuantum processMaster equationLindblad superoperatorQuantum operationQuantum algorithmQuantum Physics (quant-ph)QuantumCondensed Matter - Statistical MechanicsMathematical Physicsopen quantum systems master equations quantum correlations
researchProduct

Non-Markovianity of a quantum emitter in front of a mirror

2014

We consider a quantum emitter ("atom") radiating in a one-dimensional (1D) photonic waveguide in the presence of a single mirror, resulting in a delay differential equation for the atomic amplitude. We carry out a systematic analysis of the non-Markovian (NM) character of the atomic dynamics in terms of refined, recently developed notions of quantum non-Markovianity such as indivisibility and information back-flow. NM effects are quantified as a function of the round-trip time and phase shift associated with the atom-mirror optical path. We find, in particular, that unless an atom-photon bound state is formed a finite time delay is always required in order for NM effects to be exhibited. Th…

PhysicsQuantum PhysicsQuantum decoherencebusiness.industryFOS: Physical sciencesDelay differential equationParameter spaceAtomic and Molecular Physics and OpticsOptical pathQuantum mechanicsBound statePhotonicsQuantum informationbusinessQuantum Physics (quant-ph)Quantumquantum non-Markovianity open quantum systems waveguide QD
researchProduct

Structural change in multipartite entanglement sharing: a random matrix approach

2010

We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure u…

PhysicsQuantum PhysicsQuantum decoherencequantum information theory open quantum systemsFOS: Physical sciencesQuantum entanglementQuantum PhysicsSquashed entanglementMultipartite entanglementAtomic and Molecular Physics and OpticsQuantum mechanicsQubitStatistical physicsW stateQuantum Physics (quant-ph)Random matrixRandomness
researchProduct

Revival of quantum correlations without system-environment back-action

2010

Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and rev…

PhysicsQuantum PhysicsQuantum discordBell stateCluster stateFOS: Physical sciencesQuantum entanglementQuantum PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaEntanglementOpen quantum systemQuantum mechanicsOpen quantum systemStatistical physicsW stateAmplitude damping channelQuantum Physics (quant-ph)Quantum teleportationquantum correlation
researchProduct

Creating quantum correlations through local non-unitary memoryless channels

2012

We show that two qubits, initially in a fully classical state, can develop significant quantum correlations as measured by the quantum discord (QD) under the action of a local memoryless noise (specifically we consider the case of a Markovian amplitude-damping channel). This is analytically proven after deriving in a compact form the QD for the class of separable states involved in such a process. We provide a picture in the Bloch sphere that unambiguously highlights the physical mechanism behind the effect regardless of the specific measure of QCs adopted.

PhysicsQuantum PhysicsQuantum discordFOS: Physical sciencesQuantum capacityQuantum channelAtomic and Molecular Physics and OpticsOpen quantum systemQuantum error correctionQuantum processQuantum mechanicsQuantum operationQuantum Physics (quant-ph)Amplitude damping channelquantum correlations quantum channels qubitENTANGLEMENT
researchProduct