Search results for "Quantum dot"

showing 10 items of 418 documents

Electron-hole duality and vortex rings in quantum dots

2004

In a quantum-mechanical system, particle-hole duality implies that instead of studying particles, we can get equivalent information by studying the missing particles, the so-called holes. Using this duality picture for rotating fermion condensates the vortices appear as holes in the Fermi see. Here we predict that the formation of vortices in quantum dots at high magnetic fields causes oscillations in the energy spectrum which can be experimentally observed using accurate tunnelling spectroscopy. We use the duality picture to show that these oscillations are caused by the localisation of vortices in rings.

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)General Physics and AstronomyDuality (optimization)FOS: Physical sciencesElectron holeFermionMagnetic fieldVortex ringVortexCondensed Matter - Strongly Correlated ElectronsQuantum dotQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum tunnelling
researchProduct

Transport properties of quantum dots in the Wigner molecule regime

2009

The transport properties of quantum dots with up to N=7 electrons ranging from the weak to the strong interacting regime are investigated via the projected Hartree-Fock technique. As interactions increase radial order develops in the dot, with the formation of ring and centered-ring structures. Subsequently, angular correlations appear, signalling the formation of a Wigner molecule state. We show striking signatures of the emergence of Wigner molecules, detected in transport. In the linear regime, conductance is exponentially suppressed as the interaction strength grows. A further suppression is observed when centered-ring structures develop, or peculiar spin textures appear. In the nonline…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsTransportquantum dotFOS: Physical sciencesGeneral Physics and AstronomyConductanceElectronRing (chemistry)Settore FIS/03 - Fisica Della MateriaNonlinear systemOrder (biology)Quantum dotMesoscale and Nanoscale Physics (cond-mat.mes-hall)MoleculeSpin (physics)
researchProduct

Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress.

2014

Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property --- the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of $q_e f$ as function of control parameters, where $q_e$ is the electron charge and $f$ is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These de…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsGeneral Physics and AstronomyPhysics::OpticsFOS: Physical sciences02 engineering and technologyElectron021001 nanoscience & nanotechnologyElementary chargeCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesElectric chargeQuantum dotQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Charge pumpCharge carrier010306 general physics0210 nano-technologyAdiabatic processQuantumReports on progress in physics. Physical Society (Great Britain)
researchProduct

Spin and rotational symmetries in unrestricted Hartree–Fock states of quantum dots

2007

Ground state energies are obtained using the unrestricted Hartree Fock method for up to four interacting electrons parabolically confined in a quantum dot subject to a magnetic field. Restoring spin and rotational symmetries we recover Hund first rule. With increasing magnetic field, crossovers between ground states with different quantum numbers are found for fixed electron number that are not reproduced by the unrestricted Hartree Fock approximation. These are consistent with the ones obtained with more refined techniques. We confirm the presence of a spin blockade due to a spin mismatch in the ground states of three and four electrons.

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsMAGNETIC-FIELDARTIFICIAL ATOMSFOS: Physical sciencesGeneral Physics and AstronomyUnrestricted Hartree–Fockquantum dotsElectronINTERACTING ELECTRONSQuantum numberSettore FIS/03 - Fisica Della MateriaMagnetic fieldDIFFUSION MONTE-CARLOQuantum dotQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Homogeneous spaceMANY-PARTICLE SYSTEMSGround stateSpin-½New Journal of Physics
researchProduct

Charge control in laterally coupled double quantum dots

2011

4 figuras, 4 páginas.-- PACS number(s): 78.67.Hc, 73.21.La, 78.55.Cr

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsOptical propertiesQuantum dotsElectrons--EmissióQuantum point contactQuantum-confined Stark effectFOS: Physical sciencesElectronsElectronic structureCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceQuantum dot laserQuantum dotElectronic propertiesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electrons--EmissionEmission spectrumTrionAtomic physicsPunts quànticsQuantum tunnelling
researchProduct

Single-parameter quantized charge pumping in high magnetic fields

2008

We study single-parameter quantized charge pumping via a semiconductor quantum dot in high magnetic fields. The quantum dot is defined between two top gates in an AlGaAs/GaAs heterostructure. Application of an oscillating voltage to one of the gates leads to pumped current plateaus in the gate characteristic, corresponding to controlled transfer of integer multiples of electrons per cycle. In a perpendicular-to-plane magnetic field the plateaus become more pronounced indicating an improved current quantization. Current quantization is sustained up to magnetic fields where full spin polarization of the device can be expected.

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Spin polarizationCondensed matter physicsFOS: Physical sciencesHeterojunction02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesMagnetic fieldCharge pumpingQuantization (physics)Quantum dot0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyVoltage
researchProduct

Magnetism in one-dimensional quantum dot arrays

2005

We employ the density functional Kohn-Sham method in the local spin-density approximation to study the electronic structure and magnetism of quasi one-dimensional periodic arrays of few-electron quantum dots. At small values of the lattice constant, the single dots overlap, forming a non-magnetic quantum wire with nearly homogenous density. As the confinement perpendicular to the wire is increased, i.e. as the wire is squeezed to become more one-dimensional, it undergoes a spin-Peierls transition. Magnetism sets in as the quantum dots are placed further apart. It is determined by the electronic shell filling of the individual quantum dots. At larger values of the lattice constant, the band …

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSpin polarizationQuantum wireFOS: Physical sciencesElectronic structureElectronCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsQuantum dotQuantum dot laserMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated ElectronsLocal-density approximationElectronic band structurePhysical Review B
researchProduct

Aharonov-Bohm effect in many-electron quantum rings

2010

The Aharonov-Bohm effect is investigated in two-dimensional, single-terminal quantum rings in magnetic fields by using time-dependent density-functional theory. We find multiple transport loops leading to the oscillation periods of $h/(en)$, where $n$ is the number of loops. We show that the Aharonov-Bohm oscillations are relatively weakly affected by the electron-electron interactions, whereas the ring width has a strong effect on the characteristics of the oscillations. Our results propose that in those experimental semiconductor quantum-ring devices that show clear Aharonov-Bohm oscillations the electron current is dominated by a few states along narrow conduction channels.

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsbusiness.industryOscillationFOS: Physical sciencesQuantum PhysicsTime-dependent density functional theoryElectronCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldCondensed Matter - Strongly Correlated Electronssymbols.namesakeSemiconductorQuantum dotQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsbusinessAharonov–Bohm effectQuantumPhysical Review B
researchProduct

Ultrafast non-linear optical signal from a single quantum dot: exciton and biexciton effects

2002

We present results on both the intensity and phase-dynamics of the transient non-linear optical response of a single quantum dot (SQD). The time evolution of the Four Wave Mixing (FWM) signal on a subpicosecond time scale is dominated by biexciton effects. In particular, for the cross-polarized excitation case a biexciton bound state is found. In this latter case, mean-field results are shown to give a poor description of the non-linear optical signal at small times. By properly treating exciton-exciton effects in a SQD, coherent oscillations in the FWM signal are clearly demonstrated. These oscillations, with a period corresponding to the inverse of the biexciton binding energy, are correl…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)ExcitonTime evolutionFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsPolarization (waves)Molecular physicsCondensed Matter - Strongly Correlated ElectronsFour-wave mixingQuantum dotMesoscale and Nanoscale Physics (cond-mat.mes-hall)Bound stateGeneral Materials ScienceUltrashort pulseBiexcitonJournal of Physics: Condensed Matter
researchProduct

Universal decay cascade model for dynamic quantum dot initialization.

2009

Dynamic quantum dots can be formed by time-dependent electrostatic potentials in nanoelectronic devices, such as gate- or surface-acoustic-wave-driven electron pumps. Ability to control the number of captured electrons with high precision is required for applications in fundamental metrology and quantum information processing. In this work we propose and quantify a scheme to initialize quantum dots with a controllable number of electrons. It is based on the stochastic decrease in the electron number of a shrinking dynamic quantum dot and is described by a nuclear decay cascade model with "isotopes" being different charge states of the dot. Unlike the natural nuclei, the artificial confineme…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesGeneral Physics and AstronomyInitializationCoulomb blockade02 engineering and technologyDecoupling (cosmology)Electron021001 nanoscience & nanotechnology01 natural sciencesComputational physicsCondensed Matter - Strongly Correlated ElectronsQuantum dotCascadeQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMaster equationProbability distribution010306 general physics0210 nano-technologyPhysical review letters
researchProduct