Search results for "Quantum dot"
showing 10 items of 418 documents
Light harvesting with Ge quantum dots embedded in SiO2 and Si3N4
2014
Cataloged from PDF version of article. Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs e…
Dual Cherenkov Radiation-Induced Near-Infrared Luminescence Imaging and Photodynamic Therapy toward Tumor Resection
2020
International audience; Cherenkov radiation (CR), the blue light seen in nuclear reactors, is emitted by some radiopharmaceuticals. This study showed that (1) a portion of CR could be transferred in the region of the optical spectrum, where biological tissues are most transparent: as a result, upon radiance amplification in the near-infrared window, the detection of light could occur twice deeper in tissues than during classical Cherenkov luminescence imaging and (2) Cherenkov-photodynamic therapy (CR-PDT) on cells could be achieved under conditions mimicking unlimited depth using the CR-embarked light source, which is unlike standard PDT, where light penetration depth is limited in biologi…
The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots
2013
[EN] The structural and morphological features of bimodal-sized InAs/(In) GaAs quantum dots with density in the low 10(9) cm(-2) range were analyzed with transmission electron microscopy and atomic force microscopy and were related to their optical properties, investigated with photoluminescence and time-resolved photoluminescence. We show that only the family of small quantum dots (QDs) is able to emit narrow photoluminescence peaks characteristic of single-QD spectra; while the behavior of large QDs is attributed to large strain fields that may induce defects affecting their optical properties, decreasing the optical intensity and broadening the homogeneous linewidth. Then, by using a rat…
Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and ph…
2016
A perovskite–quantum dot exciplex has been detected, opening a broad range of possibilities for advanced optoelectronic devices.
BiI3 nanoclusters in melt-grown CdI2 crystals studied by optical absorption spectroscopy
2013
Optical absorption spectroscopy of CdI2–BiI3 layered crystals has been performed in the temperature range of 77–300 K. The main absorption, observed in these crystals at 2.59 eV is related to quantum confined exciton absorption of bimolecular BiI3 cluster. Low energy absorption peaks at 2.38 eV, 2.06 eV and 1.94 eV can be tentatively assigned to larger clusters composed of 4, 6 or more BiI3 molecules. In ultra-thin samples of CdI2–BiI3 several bands at 2.84 eV, 3.03 eV and 3.27 eV were observed which are ascribed to higher excited states of the excitons in bimolecular BiI3 cluster.
Absorption spectroscopy of single InAs self-assembled quantum dots
2004
Abstract Excitonic transitions of single InAs self-assembled quantum dots were directly measured at 4.2 K in an optical transmission experiment. We use the Stark effect in order to tune the exciton energy of a single quantum dot into resonance with a narrow-band laser. With this method, sharp resonances in the transmission spectra are observed. The oscillator strengths as well as the homogeneous line widths of the single-dot optical transitions are obtained. A clear saturation in the absorption is observed at modest laser powers.
Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells
2011
Exciton separation dynamics in the electron transfer system containing highly photostable CdSe/CdS core/shell nanocrystal quantum dots and adsorbed methylviologen was investigated by means of femtosecond absorption spectroscopy. The experiments revealed that electron extraction from the photoexcited core is possible, and the rate of the ET reaction strongly depends on the CdS shell thickness. A CdS associated exponential decay constant β of 0.33 A−1 was obtained reflecting the electronic barrier effect of the shell. These findings show that core/shell structures are well suited for the design of optimized QD-based solar cells.
Zinc oxide nanocrystals as electron injecting building blocks for plastic light sources
2012
Hybrid inorganic–organic light emitting devices (HyLEDs) employing ZnO nanocrystals as one of their metal oxide contacts lead to very bright devices on plastic substrates with performances superior to those obtained from the rigid counterparts employing planar films of bulk ZnO. The superior performance is related to the increase in the bandgap of the ZnO nanocrystals caused by quantum confinement effects. We demonstrate that this effect diminishes with increasing annealing temperature of the ZnO nanocrystal layer due to a gradual decrease of the bandgap towards the bulk ZnO value. Therefore, best performances were obtained with room temperature processing of the ZnO nanocrystals.
Suppression of electron trapping by quantum dot emitters using a grafted polystyrene shell
2019
A fundamental problem of adding chromophores to an organic host is that their smaller band gap leads to severe trapping of either electrons or holes, resulting in strongly unbalanced transport. We demonstrate that electron trapping by an inorganic quantum dot (QD) in a conjugated polymer host can be suppressed by functionalizing its shell with a thin insulating polystyrene layer. The polystyrene shell not only reduces trapping, but also suppresses detrapping of captured electrons, resulting in increased charging of the QDs with subsequent voltage scans, after initial charging, a red-emitting hybrid polymer:QD light-emitting diode is obtained with voltage independent electroluminescence spec…
Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability limitation
2017
Abstract Gallium selenide is one of the most promising candidates to extend the window of band gap values provided by existing two-dimensional semiconductors deep into the visible potentially reaching the ultraviolet. However, the tunability of its band gap by means of quantum confinement effects is still unknown, probably due to poor nanosheet stability. Here, we demonstrate that the optical band gap band of GaSe nanosheets can be tuned by ∼120 meV from bulk to 8 nm thick. The luminescent response of very thin nanosheets (<8 nm) is strongly quenched due to early oxidation. Oxidation favors the emergence of sharp material nanospikes at the surface attributable to strain relaxation. Simul…