Search results for "Quantum efficiency"
showing 10 items of 92 documents
Photophysical and electroluminescence properties of bis(2′,6′-difluoro-2,3′-bipyridinato-N,C4′)iridium(picolinate) complexes: effect of electron-with…
2015
Herein, we have synthesized a series of 2′,6′-difluoro-2,3′-bipyridine cyclometalating ligands by substituting electron-withdrawing (–CHO, –CF3, and –CN) and electron-donating (–OMe and –NMe2) groups at the 4′ position of the pyridyl moiety and utilized them for the construction of five new iridium(III) complexes (Ir1–Ir5) in the presence of picolinate as an ancillary ligand. The photophysical properties of the developed iridium(III) compounds were investigated with a view to understand the substituent effects. The strong electron-withdrawing (–CN) group containing the iridium(III) compound (Ir3) exhibits highly efficient genuine green phosphorescence (λmax = 508 nm) at room temperature in …
Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes
2021
Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to th…
Energy structure of thin films of carbazole derivatives with metal electrodes
2011
Study of charge carrier transport in organic electroluminescent devices, organic photovoltaic devices, and organic field-effect transistors is one of the most important points. In order to realize comparable electron and hole transport in thin organic films with electrodes the energy structure of such devices are of great importance. In this work, we have studied electrical properties and energy structure of two carbazole derivatives. The threshold energy of photoconductivity quantum efficiency is 2.90 eV and optical energy gap is 3.3 eV in thin films is obtained. The values of work function of ITO, Au, Cu and Pd electrodes are energetically close to conductivity level of holes and holes in…
Photoemission of spinpolarized electrons from strained GaAsP
1996
Strained layer GaAs.95P.05 photo cathodes are presented, which emit electron beams spinpolarized to a degree of P = 75% typically. Quantum yields around QE = 0.4% are observed routinely. The figure of merit P2 × QE = 2.3 × 10−3 is comparable to that of the best strained layer cathodes reported in literature. The optimum wavelength of irradiating light around 830 nm is in convenient reach of Ti:sapphire lasers or diode lasers respectively. The cathodes are produced using MOCVD-techniques. A GaAs.55P.45-GaAs.85P.15 superlattice structure prevents the migration of dislocations from the substrate and bottom layers to the strained overlayer. The surface is protected by an arsenic layer so that n…
UV-induced Degradation Study of Multicrystalline Silicon Solar Cells Made from Different Silicon Materials
2013
Abstract The effect of ultraviolet-induced degradation (UV-ID) on solar cells made from two different solar grade materials has been compared. By using identical wafer and cell production units, effects originating in the two materials; solar grade produced by the Elkem Solar method (ESS™) was compared to standard polysilicon solar cells. Silicon wafers were selected precisely from similar positions from respective silicon bricks to process identical standard solar cells. The quantum efficiency maps at particular laser wavelengths and IV parameters of all solar cells were measured before and after UV-ID to visualize defects sites in the solar cells and to observe the extent of degradation. …
Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells
2018
Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, iden…
Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles
2012
Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the inte…
Autonomous artificial nanomotor powered by sunlight
2006
Light excitation powers the reversible shuttling movement of the ring component of a rotaxane between two stations located at a 1.3-nm distance on its dumbbell-shaped component. The photoinduced shuttling movement, which occurs in solution, is based on a “four-stroke” synchronized sequence of electronic and nuclear processes. At room temperature the deactivation time of the high-energy charge-transfer state obtained by light excitation is ≈10 μs, and the time period required for the ring-displacement process is on the order of 100 μs. The rotaxane behaves as an autonomous linear motor and operates with a quantum efficiency up to ≈12%. The investigated system is a unique example of an artif…
Radiative efficiency of lead iodide based perovskite solar cells
2014
The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.1…
Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology
2013
In this work, we investigate the spectral response of metal-oxide- semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of Ge NC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of ~ 700% at - 10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more…