Search results for "Quantum efficiency"

showing 10 items of 92 documents

Electrodes for GaOHPc:PCBM/P3HT:PCBM bulk heterojunction solar cell

2012

Abstract The bulk heterojunction approach appears to be one of the most promising concepts of creating efficient, low cost and easily producible organic solar cells. For this purpose one of the best materials was regioregular poly-3-hexylthiophene (P3HT), which is widely used as a donor molecule and a hole transporter, with soluble fullerene derivative (PCBM) as an acceptor and electron transporter. The main drawback of this highly efficient blend is its limited spectral range, covering only a 350–650 nm spectral interval. So the main aim of the present work was to extend the spectral range of the cell up to 850 nm by adding a second bulk heterojunction layer of complementary absorption spe…

PhotocurrentSpin coatingOrganic solar cellbusiness.industryChemistryEnergy conversion efficiencyGeneral Physics and AstronomyPolymer solar celllaw.inventionlawSolar cellOptoelectronicsQuantum efficiencyCharge carrierPhysical and Theoretical ChemistrybusinessChemical Physics
researchProduct

PV and magnetic field effects in poly(3-hexylthiophene)-fullerene cells doped with phthalocyanine soluble derivative

2007

An attempt was made to widen the photosensitivity spectral range of poly(3-hexylthiophene)-fullerene blend by adding an extra electron donor — a newly synthesized soluble phthalocyanine derivative (SnClPc) having the electron absorption band at 708 nm. As the electron acceptor, home-synthesised di(ethoxycarbonyl) methano-fullerene carboxylate (C 61 (CO 2 Et) 2 ) was used, and as the hole transporter — the regioregular poly 3-hexylthiophene (P3HT). The sandwich-type samples were prepared on an ITO glass substrate by coating it with a 30–50 nm thick PEDOT:PSS layer followed by a ~100 nm thick P3HT:C 61 (CO 2 Et) 2 :SnClPc blend. For the top electrodes In or Au were used. Spectral dependences …

Photocurrentchemistry.chemical_classificationChemistryDopingAnalytical chemistryElectron acceptorCondensed Matter PhysicsElectronic Optical and Magnetic Materialschemistry.chemical_compoundPhotosensitivityPEDOT:PSSAbsorption bandPhthalocyanineOrganic chemistryQuantum efficiencyInstrumentationThe European Physical Journal Applied Physics
researchProduct

Thiphenylmethane based structural fragments as building blocks towards solution-processable heteroleptic iridium(iii) complexes for OLED use

2019

A novel structural approach to solution-processable heteroleptic iridium(III) complexes is presented. On the basis of 2-arylbenzo[d]thiazole cyclometalating main ligands and picolinic acid (pic) and acetylacetone (acac) ancillary ligands six new yellow or orange emitting materials were obtained using attached 1,1,1-triphenylmethylpentane substituents as aggregation preventing and solubility enhancing functional fragments. The obtained compounds show high photoluminescence quantum yield values in the range of 0.64 to 0.90. OLEDs with a spin-coated emissive layer were successfully prepared, with the highest achieved external quantum efficiency of 7.9%, current efficiency of 12.4 cd A−1 and po…

PhotoluminescenceAcetylacetonechemistry.chemical_elementQuantum yield02 engineering and technologyGeneral ChemistryPicolinic acid010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundchemistryMaterials ChemistryOLEDPhysical chemistryQuantum efficiencyIridium0210 nano-technologyThiazoleNew Journal of Chemistry
researchProduct

Radiative phonon-assisted and Auger recombination in Si nanocrystals

2010

Abstract Recent analysis of the literature shows that the photoluminescence (PL) of Si nanocrystals and porous silicon is caused by phonon-assisted exciton radiative recombination, as well as by direct radiative electron transfer from the second to the first conduction sub-band, which is related to the Auger recombination. The PL decay curve for porous silicon after excitation with ultraviolet laser pulse has been established experimentally. We have constructed continuity equations for the first and the second conduction sub-bands, including radiative phonon-assisted exciton recombination, Auger recombination and direct radiative transition from the second to the first conduction sub-band. …

PhotoluminescenceAuger effectPhononChemistryExcitonOrganic ChemistryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsInorganic Chemistrysymbols.namesakeRadiative transfersymbolsSpontaneous emissionQuantum efficiencyElectrical and Electronic EngineeringPhysical and Theoretical ChemistryAtomic physicsSpectroscopyExcitationOptical Materials
researchProduct

Light-Emitting Electrochemical Cells Using Cyanine Dyes as the Active Components

2013

Light-emitting electrochemical cells (LECs) based on cyanine molecules were prepared. High photoluminescence quantum yields were obtained for host-guest films using two cyanine dyes, reaching 27%. Sandwiching these films in between two electrodes allows for very stable near-infrared emission with a maximum radiant flux of 1.7 W m(-2) at an external quantum efficiency of 0.44%.

PhotoluminescenceChemical substanceGeneral ChemistryPhotochemistryBiochemistryCatalysisElectrochemical cellchemistry.chemical_compoundColloid and Surface ChemistrychemistryRadiant fluxElectrodeMoleculeQuantum efficiencyCyanineJournal of the American Chemical Society
researchProduct

Near-Quantitative Internal Quantum Efficiency in a Light-Emitting Electrochemical Cell

2008

A green-light-emitting iridium(III) complex was prepared that has a photoluminescence quantum yield in a thin-film configuration of almost unity. When used in a simple solid-state single-layer light-emitting electrochemical cell, it yielded an external quantum efficiency of nearly 15% and a power efficiency of 38 Lm/W. We argue that these high external efficiencies are only possible if near-quantitative internal electron-to-photon conversion occurs. This shows that the limiting factor for the efficiency of these devices is the photoluminescence quantum yield in a solid film configuration. The observed efficiencies show the prospect of these simple electroluminescent devices for lighting and…

PhotoluminescenceChemistrybusiness.industrychemistry.chemical_elementQuantum yieldElectroluminescenceElectrochemical cellInorganic ChemistryOptoelectronicsQuantum efficiencyIridiumLight-emitting electrochemical cellPhysical and Theoretical ChemistrybusinessElectrical efficiencyInorganic Chemistry
researchProduct

Single-Ion Heat Engine at Maximum Power

2012

We propose an experimental scheme to realize a nanoheat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its feasibility and its ability to operate at a maximum efficiency of 30% under realistic conditions.

PhysicsCouplingMaximum power principleMonte Carlo methodGeneral Physics and AstronomyThermodynamicsOtto cycleQuantum efficiencyMechanicsIon trap530IonHeat engine
researchProduct

Recent results with lifetime enhanced microchannel-plate photomultipliers

2018

Abstract The favored photon sensors for the DIRC (detection of internally reflected Cherenkov light) detectors at the PANDA (Anti-proton Annihilation at Darmstadt) experiment at FAIR (Facility for anti-proton and ion research) are micro-channel-plate photomultipliers (MCP-PMTs). The main problem until a few years ago was the limited lifetime of the MCP-PMTs caused by a rapid decrease in quantum efficiency (QE) of the photo cathode (PC) with increasing integrated anode charge (IAC). These limitations are overcome by applying an atomic layer deposition (ALD) coating on the MCPs, as recently done by PHOTONIS and Hamamatsu. During the last years’ tests of lifetime enhanced MCP-PMTs were perform…

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhoton010308 nuclear & particles physicsbusiness.industry01 natural sciencesCathode030218 nuclear medicine & medical imagingAnodelaw.invention03 medical and health sciencesAtomic layer deposition0302 clinical medicineOpticsDetection of internally reflected Cherenkov lightlaw0103 physical sciencesQuantum efficiencyMicrochannel plate detectorbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The characterisation of the multianode photomultiplier tubes for the RICH-1 upgrade project at COMPASS

2008

Abstract A major upgrade of the Cherenkov photon detection system of COMPASS RICH-1 has been performed and it has been in operation since the 2006 physics run. The inner part of the photon detector has been replaced by a different technology in order to measure Cherenkov photons at high photoelectron rates, up to several times 10 6 per second and per channel. Cherenkov photons from 200 to 750 nm are detected by 576 multianode photomultiplier tubes (MAPMTs) with 16 channels each, coupled to individual fused silica lens telescopes and fast, high sensitivity and high time resolution electronics read-out. To guarantee an optimal performance of the complete system, parameters like dark current, …

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonPhysics::Instrumentation and Detectorsbusiness.industryDetectorOpticsUpgradeCompassQuantum efficiencybusinessInstrumentationCherenkov radiationDark current
researchProduct

Improved lifetime of microchannel-plate PMTs

2014

Abstract The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈ 6 C / cm 2 integrated anode charge without a substa…

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonbusiness.industryDetectorNanotechnologyengineering.materialCathodeAnodelaw.inventionCoatinglawengineeringOptoelectronicsQuantum efficiencyMicrochannel plate detectorbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct