Search results for "Quantum electrodynamics."

showing 10 items of 797 documents

Unquenching the gluon propagator with Schwinger-Dyson equations

2012

In this article we use the Schwinger-Dyson equations to compute the nonperturbative modifications caused to the infrared finite gluon propagator (in the Landau gauge) by the inclusion of a small number of quark families. Our basic operating assumption is that the main bulk of the effect stems from the "one-loop dressed" quark loop contributing to the full gluon self-energy. This quark loop is then calculated, using as basic ingredients the full quark propagator and quark-gluon vertex; for the quark propagator we use the solution obtained from the quark gap equation, while for the vertex we employ suitable Ans\"atze, which guarantee the transversality of the answer. The resulting effect is i…

High Energy Physics - TheoryPhysicsQuarkNuclear and High Energy PhysicsTransversalityHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyPropagatorFOS: Physical sciencesFísicaGluonRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum electrodynamicsLattice (order)High Energy Physics::Experiment
researchProduct

Acoustic white holes in flowing atomic Bose-Einstein condensates

2010

International audience; We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includ…

High Energy Physics - Theory[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]PhononWhite holeGeneral Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmaslaw.inventionGeneral Relativity and Quantum CosmologyCorrelation functionlaw0103 physical sciences010306 general physicsSUPERFLOWBLACK-HOLESQuantum fluctuationPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]HorizonMean field theoryHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Quantum electrodynamics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesBose–Einstein condensateHawking radiation
researchProduct

Momentum anisotropy effects for quarkonium in a weakly coupled quark-gluon plasma below the melting temperature

2017

In the early stages of heavy-ion collisions, the hot QCD matter expands more longitudinally than transversely. This imbalance causes the system to become rapidly colder in the longitudinal direction and a local momentum anisotropy appears. In this paper, we study the heavy-quarkonium spectrum in the presence of a small plasma anisotropy. We work in the framework of pNRQCD at finite temperature. We inspect arrangements of non-relativistic and thermal scales complementary to those considered in the literature. In particular, we consider temperatures larger and Debye masses smaller than the binding energy, which is a temperature range relevant for presently running LHC experiments. In this set…

High Energy Physics - Theoryheavy ion: scatteringNuclear Theoryhiukkasfysiikka01 natural sciences7. Clean energy[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics - Phenomenology (hep-ph)quarkonium: heavyquarkonium: mass spectrum[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)AnisotropyNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]quark gluon: plasmaQCD matterDebyeQuantum chromodynamicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]quarkonium: momentumQuarkoniumHigh Energy Physics - PhenomenologyQuantum electrodynamicssymbolsquarkonium[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesanisotropy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]plasma: anisotropyNuclear Theory (nucl-th)Momentumsymbols.namesake0103 physical sciencesplasma: expansionparticle physicsquantum chromodynamics: perturbation theory010306 general physicsquantum chromodynamics: matterquantum chromodynamics: nonrelativisticta114effect: anisotropy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPlasmamomentum: anisotropyquarkonium: dissociationHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasma[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical Review D
researchProduct

Dark matter, dark photon and superfluid He-4 from effective field theory

2020

We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.

High Energy Physics - Theorylight dark matterNuclear and High Energy PhysicsPhotonDark matterFOS: Physical scienceshelium01 natural sciencesDark photonVector bosonStandard ModelSuperfluidityeffective theoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory010306 general physicsphononLight dark matterPhysics010308 nuclear & particles physicslcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsdark photondark photon; effective theory; helium; light dark matter; phononlcsh:Physics
researchProduct

The next generation of laser spectroscopy experiments using light muonic atoms

2018

Precision spectroscopy of light muonic atoms provides unique information about the atomic and nuclear structure of these systems and thus represents a way to access fundamental interactions, properties and constants. One application comprises the determination of absolute nuclear charge radii with unprecedented accuracy from measurements of the 2S - 2P Lamb shift. Here, we review recent results of nuclear charge radii extracted from muonic hydrogen and helium spectroscopy and present experiment proposals to access light muonic atoms with Z ≥ 3. In addition, our approaches towards a precise measurement of the Zemach radii in muonic hydrogen (μp) and helium (μ 3He+) are discussed. These resul…

HistoryAtomic Physics (physics.atom-ph)measurement methodschemistry.chemical_elementFOS: Physical sciences01 natural sciencesEffective nuclear chargeEducationLamb shiftPhysics - Atomic Physicshydrogen: muonic atom0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpectroscopyHeliumExotic atomPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsPrecision spectroscopyhelium: muonic atomnucleusNuclear structureFundamental interaction[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Computer Science ApplicationsLamb shiftlaserchemistrycharge radiusquantum electrodynamics: bound statespectrometerAtomic physicsexperimental results
researchProduct

Regularized pseudopotential for mean-field calculations

2019

We present preliminary results obtained with a finite-range two-body pseudopotential complemented with zero-range spin-orbit and density-dependent terms. After discussing the penalty function used to adjust parameters, we discuss predictions for binding energies of spherical nuclei calculated at the mean-field level, and we compare them with those obtained using the standard Gogny D1S finite-range effective interaction.

HistoryNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Binding energyNuclear TheoryFOS: Physical sciencesSpin orbitsMean-field calculationsBinding energy01 natural sciences114 Physical sciencesEducationPseudopotentialNuclear Theory (nucl-th)Effective interactions0103 physical sciencesDensity dependentPenalty method010306 general physicsNuclear theoryPseudopotentialsPhysics010308 nuclear & particles physicsPhysicstiheysfunktionaaliteoriaPenalty functionComputer Science ApplicationsMean field theoryDensity dependentQuantum electrodynamicsydinfysiikkaMean-field level
researchProduct

Cavity solitons in nondegenerate optical parametric oscillation

2000

Abstract We find analytically cavity solitons in nondegenerate optical parametric oscillators. These solitons are exact localised solutions of a pair of coupled parametrically driven Ginzburg–Landau equations describing the system for large pump detuning. We predict the existence of a Hopf bifurcation of the soliton resulting in a periodically pulsing localised structure. We give numerical evidence of the analytical results and address the problem of cavity soliton interaction.

Hopf bifurcationPhysicsbusiness.industryParametric oscillationGinzburg landau equationPhysics::OpticsNonlinear opticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsExact solutions in general relativityOpticsQuantum mechanicsQuantum electrodynamicssymbolsSolitonElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessNonlinear Sciences::Pattern Formation and SolitonsParametric statisticsOptics Communications
researchProduct

Cluster Expansions and Variational Monte Carlo in Medium Light Nuclei

1993

The B1 Brink-Boeker effective interaction is used to compute variational upper bounds for the ground state energy of nuclei from 16 O up to 40 Ca. The calculations are carried out by means of the Variational Monte Carlo method and with a multiplicative cluster expansion up to fourth order.

Hybrid Monte CarloPhysicsVariational methodQuantum Monte CarloQuantum electrodynamicsNuclear TheoryDynamic Monte Carlo methodVariational Monte CarloStatistical physicsGround stateMonte Carlo molecular modelingCluster expansion
researchProduct

Direct perturbation theory in terms of energy derivatives: scalar-relativistic treatment up to sixth order.

2011

A formulation of sixth-order direct perturbation theory (DPT) to treat relativistic effects in quantum-chemical calculations is presented in the framework of derivative theory. Detailed expressions for DPT6 are given at the Hartree-Fock level in terms of the third derivative of the energy with respect to the relativistic perturbation parameter defined as λ(rel)=c(-2). They were implemented for the computation of scalar-relativistic energy corrections. The convergence of the scalar-relativistic DPT expansion is studied for energies and first-order properties such as dipole moment and electric-field gradient within the series of the hydrogen halides (HX, X = F, Cl, Br, I, and At). Comparison …

HydrogenChemistryComputationGeneral Physics and AstronomyPerturbation (astronomy)chemistry.chemical_elementMonotonic functionThird derivativeHydrofluoric AcidHydrobromic AcidDipoleRate of convergenceQuantum mechanicsQuantum electrodynamicsQuantum TheoryHydrochloric AcidPhysical and Theoretical ChemistryRelativistic quantum chemistryThe Journal of chemical physics
researchProduct

A new lattice action for studying topological charge

1996

We propose a new lattice action for non-abelian gauge theories, which will reduce short-range lattice artifacts in the computation of the topological susceptibility. The standard Wilson action is replaced by the Wilson action of a gauge covariant interpolation of the original fields to a finer lattice. If the latter is fine enough, the action of all configurations with non-zero topological charge will satisfy the continuum bound. As a simpler example we consider the $O(3)$ $\sigma$-model in two dimensions, where a numerical analysis of discretized continuum instantons indicates that a finer lattice with half the lattice spacing of the original is enough to satisfy the continuum bound.

InstantonNuclear and High Energy PhysicsHigh Energy Physics::LatticeLattice field theoryFOS: Physical sciencesTheoretical physicsLattice constantHigh Energy Physics - LatticeHamiltonian lattice gauge theoryLattice (order)Lattice gauge theoryCovariant transformationGauge theoryScalingTopological quantum numberMathematicsPhysicsQuantum gauge theoryNumerical analysisHigh Energy Physics - Lattice (hep-lat)FísicaLattice QCDMap of latticesAtomic and Molecular Physics and OpticsReciprocal latticeQuantum electrodynamicsLattice model (physics)Nuclear Physics B - Proceedings Supplements
researchProduct