Search results for "Quantum electrodynamics."
showing 10 items of 797 documents
Vector screening masses in the quark–gluon plasma and their physical significance
2014
Static and non-static thermal screening states that couple to the conserved vector current are investigated in the high-temperature phase of QCD. Their masses and couplings to the current are determined at weak coupling, as well as using two-flavor lattice QCD simulations. A consistent picture emerges from the comparison, providing evidence that non-static Matsubara modes can indeed be treated perturbatively. We elaborate on the physical significance of the screening masses.
Neutrino-nuclear responses and the effective value of weak axial coupling
2019
On-going measurements of the neutrinoless ββ decay are accompanied by the growing interest in computing the values of the associated nuclear matrix elements. In order to extract the neutrino mass from the potentially measured ββ half-lives one not only needs to know the values of the nuclear matrix elements but also the effective value of the weak axial-vector coupling constant gA since its value affects strongly the ββ half-lives. In order to gain knowledge of the possible quenching of gA in finite nuclei one can study, e.g., allowed Gamow-Teller β decays. A new promising tool to study the quenching are the measurements of ordinary muon capture transitions for which the range of momentum e…
Analytic energy gradients in closed-shell coupled-cluster theory with spin-orbit coupling
2008
Gradients in closed-shell coupled-cluster (CC) theory with spin-orbit coupling included in the post Hartree-Fock treatment have been implemented at the CC singles and doubles (CCSD) level and at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The additional computational effort required in analytic energy-gradient calculations is roughly the same as that for ground-state energy calculations in the case of CCSD, and it is about twice in the case of CCSD(T) calculations. The structures, harmonic frequencies, and dipole moments of some heavy-element compounds have been calculated using the present analytic energy-gradient techniques including spin-orbit co…
Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide
2011
International audience; We theoretically investigate the spontaneous emission of a point-like dipolar emitter located near a two-dimensional plasmonic waveguide of arbitrary form. We invoke an explicit link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and nonradiative contributions to the spontaneous emission are also discussed in detail.
Quantum Theory of a Radiating Harmonically Bound Charge
2010
A phenomenological Hamiltonian giving the equation of motion of a non relativistic charges that accelerates and radiates is quantized. The theory is applied to the harmonic oscillator. To derive the decay time the physical parameters entering the calculations are obtained from the theory of the hydrogen atom; the agree- ment of the predicted value with the experiments is striking although the mathematics is very simple.
Relativistic corrections to electrical first-order properties using direct perturbation theory.
2008
Direct perturbation theory (DPT) is applied to compute relativistic corrections to electrical properties such as dipole moment, quadrupole moment, and electric-field gradient. The corrections are obtained as second derivatives of the energy and are given via method-independent expressions that involve the first derivative of the density matrix with respect to the relativistic perturbation as well as property integrals with additional momentum operators. Computational results obtained using Hartree-Fock (HF), second-order Moller-Plesset (MP2) perturbation theory, and the coupled-cluster singles and doubles approach augmented by a perturbative treatment of triple excitations are presented for…
Dynamical mean-field theory calculation with the dynamical density-matrix renormalization group
2006
Abstract We study the Hubbard model at half band-filling on a Bethe lattice with infinite coordination number at zero temperature. We use the dynamical mean-field theory (DMFT) mapping to a single-impurity Anderson model with a bath whose properties have to be determined self-consistently. For a controlled and systematic implementation of the self-consistency scheme we use the fixed-energy approach to the DMFT. Using the dynamical density–matrix renormalization group method (DDMRG) we calculate the density of states (DOS) with a resolution ranging from 3% of the bare bandwidth W = 4 t at high energies to 0.01% for the quasi-particle peak. The DDMRG resolution and accuracy for the DOS is sup…
Spectral Function of the One-Dimensional Hubbard Model away from Half Filling
2004
We calculate the photoemission spectral function of the one-dimensional Hubbard model away from half filling using the dynamical density matrix renormalization group method. An approach for calculating momentum-dependent quantities in finite open chains is presented. Comparison with exact Bethe Ansatz results demonstrates the unprecedented accuracy of our method. Our results show that the photoemission spectrum of the quasi-one-dimensional conductor TTF-TCNQ provides evidence for spin-charge separation on the scale of the conduction band width.
Relativistic corrections in quasi-free electro-disintegration of the deuteron
1992
The role of relativistic effects in deuteron break-up by electrons is investigated for quasi-free kinematics by including the lowest-order relativistic corrections beyond the nonrelativistic limit to electromagnetic operators and by wave-function boost. In particular, the dependence of form factors and structure functions on the frame in which they are calculated is studied. It is found that the inclusion of these corrections leads to observables that are less frame-dependent than for a pure nonrelativistic description. The boost contributions show a decisive influence even though they are small in absolute size. Furthermore, the dependence on the parametrization of the nucleon current in t…
Perturbative triples corrections in state-specific multireference coupled cluster theory
2010
We formulated and implemented a perturbative triples correction for the state-specific multireference coupled cluster approach with singles and doubles suggested by Mukherjee and co-workers, Mk-MRCCSD [Mol. Phys. 94, 157 (1998)]. Our derivation of the energy correction [Mk-MRCCSD(T)] is based on a constrained search for stationary points of the Mk-MRCC energy functional together with a perturbative expansion with respect to the appearing triples cluster operator. The Lambda-Mk-MRCCSD(T) approach derived in this way consists in (1) a correction to the off-diagonal matrix elements of the effective Hamiltonian which is unique to coupled cluster methods based on the Jeziorski-Monkhorst ansatz, …