Search results for "Quantum gas"

showing 4 items of 654 documents

Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

2017

We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose-Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross-Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted…

spinor condensateSUPERFLUID HE-3Angular momentumSYMMETRYFOS: Physical sciencesGeneral Physics and AstronomyBose-Einstein condensation114 Physical sciences01 natural sciencesInstability010305 fluids & plasmaslaw.inventionPHASESKNOTSlaw0103 physical sciencesField theory (psychology)magnetismikvanttifysiikka010306 general physicsVORTICESSpin-½Condensed Matter::Quantum GasesPhysicsBose–Einstein condensationBiaxial nematicCondensed matter physicsSkyrmionMONOPOLESCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFIELD-THEORYSymmetry (physics)skyrmionQuantum Gases (cond-mat.quant-gas)Condensed Matter - Quantum GasesBose–Einstein condensateNew Journal of Physics
researchProduct

Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene

2019

We study superconductivity of twisted bilayer graphene with local and non-local attractive interactions. We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for microscopic tight-binding and low-energy continuum models. We predict qualitative differences between local and non-local interaction schemes which could be distinguished experimentally. In the flat band limit where the pair potential exceeds the band width we show that the superfluid weight and BKT temperature are determined by multiband processes and quantum geometry of the band.

suprajohtavuusINSULATORsuperfluid densitymultiband superconductivityFOS: Physical sciences02 engineering and technologyBKT transition01 natural sciences114 Physical sciencessuperconducting phase transitionSuperconductivity (cond-mat.supr-con)SuperfluidityMAGIC-ANGLEsuperconducting fluctuationsnanorakenteetCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesgrafeeni010306 general physicsQuantumPhysicsSuperconductivityCondensed Matter::Quantum GasesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherSUPERCONDUCTIVITYCondensed Matter - SuperconductivityORDER021001 nanoscience & nanotechnologySTATEsuperconducting RFKosterlitz–Thouless transitionPairingDENSITYBerry connection and curvature0210 nano-technologyBilayer graphene
researchProduct

Towards Controlled Synthesis of Water-Soluble Gold Nanoclusters : Synthesis and Analysis

2019

Water-soluble gold nanoclusters with well-defined molecular structures and stability possess particular biophysical properties making them excellent candidates for biological applications as well as for fundamental spectroscopic studies. The currently existing synthetic protocols for atomically monodisperse thiolate-protected gold nanoclusters (AuMPCs) have been widely expanded with organothiolates, yet the direct synthesis reports for water-soluble AuMPCs are still deficient. Here, we demonstrate a wet-chemistry pH-controlled synthesis of two large water-soluble nanoclusters utilizing p-mercaptobenzoic acid (pMBA), affording different sizes of plasmonic AuMPCs on the preparative scale (∼7 …

synthesis02 engineering and technology010402 general chemistry01 natural scienceskultaQuantitative Biology::Cell BehaviorNanoclusterssynteesiPhysical and Theoretical Chemistryta116Condensed Matter::Quantum Gaseskemiallinen synteesita114Condensed Matter::OtherChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsstomatognathic diseasesGeneral EnergyWater solubleChemical engineeringnanohiukkaset0210 nano-technologygold nanoclustersThe Journal of Physical Chemistry C
researchProduct

The resonant state at filling factor {\nu} = 1/2 in chiral fermionic ladders

2017

Helical liquids have been experimentally detected in both nanowires and ultracold atomic chains as the result of strong spin-orbit interactions. In both cases the inner degrees of freedom can be considered as an additional space dimension, providing an interpretation of these systems as synthetic ladders, with artificial magnetic fluxes determined by the spin-orbit terms. In this work, we characterize the helical state which appears at filling $\nu=1/2$: this state is generated by a gap arising in the spin sector of the corresponding Luttinger liquid and it can be interpreted as the one-dimensional (1D) limit of a fractional quantum Hall state of bosonic pairs of fermions. We study its main…

topological insulatorsCondensed Matter - Strongly Correlated ElectronsnanowiresCondensed Matter - Mesoscale and Nanoscale Physicsfractional quantum Hall statescold atomsCondensed Matter - Quantum Gasesspin-orbit coupling
researchProduct