Search results for "Quantum information"
showing 10 items of 267 documents
Experimental and theoretical challenges for the trapped electron quantum computer
2009
We discuss quantum information processing with trapped electrons. After recalling the operation principle of planar Penning traps we sketch the experimental conditions to load, cool and detect single electrons. Here we present a detailed investigation of a scalable scheme including feasibility studies and the analysis of all important elements, relevant for the experimental stage. On the theoretical side, we discuss different methods to couple electron qubits. We estimate the relevant qubit coherence times and draw implications for the experimental setting. A critical assessment of quantum information processing with trapped electrons is concluding the article.
Entanglement amplification in the nonperturbative dynamics of modular quantum systems
2013
We analyze the conditions for entanglement amplification between distant and not directly interacting quantum objects by their common coupling to media with static modular structure and subject to a local (single-bond) quenched dynamics. We show that in the non-perturbative regime of the dynamics the initial end-to-end entanglement is strongly amplified and, moreover, can be distributed efficiently between distant objects. Due to its intrinsic local and non-perturbative nature the dynamics is fast and robust against thermal fluctuations, and its control is undemanding. We show that the origin of entanglement amplification lies in the interference of the ground state and at most one of the l…
Nonadiabatic quantum search algorithms
2007
7 pages, 4 figures.-- PACS nrs.: 03.67.Lx, 05.45.Mt, 72.15.Rn.-- ISI Article Identifier: 000251326400049.-- ArXiv pre-print available at: http://arxiv.org/abs/0706.1139
Information geometry of Gaussian channels
2009
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated from distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desir…
Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels
2011
We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than either coherent, thermal or single-mode squeezed states. This suggests that at high energy regimes two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result i…
Indistinguishability-enabled coherence for quantum metrology
2019
Quantum coherence plays a fundamental and operational role in different areas of physics. A resource theory has been developed to characterize the coherence of distinguishable particles systems. Here we show that indistinguishability of identical particles is a source of coherence, even when they are independently prepared. In particular, under spatially local operations, states that are incoherent for distinguishable particles, can be coherent for indistinguishable particles under the same procedure. We present a phase discrimination protocol, in which we demonstrate the operational advantage of using two indistinguishable particles rather than distinguishable ones. The coherence due to th…
Reducing quantum control for spin - spin entanglement distribution.
2009
We present a protocol that sets maximum stationary entanglement between remote spins through scattering of mobile mediators without initialization, post-selection or feedback of the mediators' state. No time-resolved tuning is needed and, counterintuitively, the protocol generates two-qubit singlet states even when classical mediators are used. The mechanism responsible for such effect is resilient against non-optimal coupling strengths and dephasing affecting the spins. The scheme uses itinerant particles and scattering centres and can be implemented in various settings. When quantum dots and photons are used a striking result is found: injection of classical mediators, rather than quantum…
Quantum error correction against photon loss using multi-component cat states
2016
We analyse a generalised quantum error correction code against photon loss where a logical qubit is encoded into a subspace of a single oscillator mode that is spanned by distinct multi-component cat states (coherent-state superpositions). We present a systematic code construction that includes the extension of an existing one-photon-loss code to higher numbers of losses. When subject to a photon loss (amplitude damping) channel, the encoded qubits are shown to exhibit a cyclic behaviour where the code and error spaces each correspond to certain multiples of losses, half of which can be corrected. As another generalisation we also discuss how to protect logical qudits against photon losses,…
Single-shot generation and detection of a two-photon generalized binomial state in a cavity
2006
A "quasi-deterministic" scheme to generate a two-photon generalized binomial state in a single-mode high-Q cavity is proposed. We also suggest a single-shot scheme to measure the generated state based on a probe two-level atom that "reads" the cavity field. The possibility of implementing the schemes is discussed.
Exploring a new regime for processing optical qubits: squeezing and unsqueezing single photons
2012
We implement the squeezing operation as a genuine quantum gate, deterministically and reversibly acting `online' upon an input state no longer restricted to the set of Gaussian states. More specifically, by applying an efficient and robust squeezing operation for the first time to non-Gaussian states, we demonstrate a two-way conversion between a particle-like single-photon state and a wave-like superposition of coherent states. Our squeezing gate is reliable enough to preserve the negativities of the corresponding Wigner functions. This demonstration represents an important and necessary step towards hybridizing discrete and continuous quantum protocols.