Search results for "Quantum physic"
showing 10 items of 1596 documents
An Operator-Based Exact Treatment of Open Quantum Systems
2005
"Quantum mechanics must be regarded as open systems. On one hand, this is due to the fact that, like in classical physics, any realistic system is subjected to a coupling to an uncontrollable environment which influences it in a non-negligible way. The theory of open quantum systems thus plays a major role in many applications of quantum physics since perfect isolation of quantum system is not possible and since a complete microscopic description or control of the environment degrees of freedom is not feasible or only partially so" [1]. Practical considerations therefore force one to seek for a simpler, effectively probabilistic description in terms of an open system. There is a close physi…
n-cluster models in a transverse magnetic field
2017
In this paper we analize a family of one dimensional fully analytically solvable models, named the n-cluster models in a transverse magnetic field, in which a many-body cluster interaction competes with a uniform transverse magnetic field. These models, independently by the cluster size n + 2, exibit a quantum phase transition, that separates a paramagnetic phase from a cluster one, that corresponds to a nematic ordered phase or a symmetry-protected topological ordered phase for even or odd n respectively. Due to the symmetries of the spin correlation functions, we prove that these models have no genuine n+2-partite entanglement. On the contrary, a non vanishing concurrence arises between s…
Trapping of Continuous-Time Quantum walks on Erdos-Renyi graphs
2011
We consider the coherent exciton transport, modeled by continuous-time quantum walks, on Erd\"{o}s-R\'{e}ny graphs in the presence of a random distribution of traps. The role of trap concentration and of the substrate dilution is deepened showing that, at long times and for intermediate degree of dilution, the survival probability typically decays exponentially with a (average) decay rate which depends non monotonically on the graph connectivity; when the degree of dilution is either very low or very high, stationary states, not affected by traps, get more likely giving rise to a survival probability decaying to a finite value. Both these features constitute a qualitative difference with re…
Standard forms and entanglement engineering of multimode Gaussian states under local operations
2007
We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parametres which completely characterise the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parametre reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particula…
A quantum particle in a box with moving walls
2013
We analyze the non-relativistic problem of a quantum particle that bounces back and forth between two moving walls. We recast this problem into the equivalent one of a quantum particle in a fixed box whose dynamics is governed by an appropriate time-dependent Schroedinger operator.
Non-Markovianity and Coherence of a Moving Qubit inside a Leaky Cavity
2017
Non-Markovian features of a system evolution, stemming from memory effects, may be utilized to transfer, storage, and revive basic quantum properties of the system states. It is well known that an atom qubit undergoes non-Markovian dynamics in high quality cavities. We here consider the qubit-cavity interaction in the case when the qubit is in motion inside a leaky cavity. We show that, owing to the inhibition of the decay rate, the coherence of the traveling qubit remains closer to its initial value as time goes by compared to that of a qubit at rest. We also demonstrate that quantum coherence is preserved more efficiently for larger qubit velocities. This is true independently of the evol…
On quantumness in multi-parameter quantum estimation
2019
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cram\'er-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
A many-body approach to transport in quantum systems : From the transient regime to the stationary state
2022
We review one of the most versatile theoretical approaches to the study of time-dependent correlated quantum transport in nano-systems: the non-equilibrium Green's function (NEGF) formalism. Within this formalism, one can treat, on the same footing, inter-particle interactions, external drives and/or perturbations, and coupling to baths with a (piece-wise) continuum set of degrees of freedom. After a historical overview on the theory of transport in quantum systems, we present a modern introduction of the NEGF approach to quantum transport. We discuss the inclusion of inter-particle interactions using diagrammatic techniques, and the use of the so-called embedding and inbedding techniques w…
Domains of time-dependent density-potential mappings
2011
The key element in time-dependent density functional theory is the one-to-one correspondence between the one-particle density and the external potential. In most approaches this mapping is transformed into a certain type of Sturm-Liouville problem. Here we give conditions for existence and uniqueness of solutions and construct the weighted Sobolev space they lie in. As a result the class of v-representable densities is considerably widened with respect to previous work.
Newton algorithm for Hamiltonian characterization in quantum control
2014
We propose a Newton algorithm to characterize the Hamiltonian of a quantum system interacting with a given laser field. The algorithm is based on the assumption that the evolution operator of the system is perfectly known at a fixed time. The computational scheme uses the Crank-Nicholson approximation to explicitly determine the derivatives of the propagator with respect to the Hamiltonians of the system. In order to globalize this algorithm, we use a continuation method that improves its convergence properties. This technique is applied to a two-level quantum system and to a molecular one with a double-well potential. The numerical tests show that accurate estimates of the unknown paramete…