Search results for "Quantum physic"
showing 10 items of 1596 documents
Nonlocal properties of dynamical three-body Casimir-Polder forces
2005
We consider the three-body Casimir-Polder interaction between three atoms during their dynamical self-dressing. We show that the time-dependent three-body Casimir-Polder interaction energy displays nonlocal features related to quantum properties of the electromagnetic field and to the nonlocality of spatial field correlations. We discuss the measurability of this intriguing phenomenon and its relation with the usual concept of stationary three-body forces.
Effect of boundaries on vacuum field fluctuations and radiation-mediated interactions between atoms
2017
In this paper we discuss and review several aspects of the effect of boundary conditions and structured environments on dispersion and resonance interactions involving atoms or molecules, as well as on vacuum field fluctuations. We first consider the case of a perfect mirror, which is free to move around an equilibrium position and whose mechanical degrees of freedom are treated quantum mechanically. We investigate how the quantum fluctuations of the mirror's position affect vacuum field fluctuations for both a one-dimensional scalar and electromagnetic field, showing that the effect is particularly significant in the proximity of the moving mirror. This result can be also relevant for poss…
Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities
2007
We consider entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell's inequality violation is obtained using an appropriate dichotomic cavity operator, that is in principle measurable.
Tuning the collective decay of two entangled emitters by means of a nearby surface
2017
We consider the radiative properties of a system of two identical correlated atoms interacting with the electromagnetic field in its vacuum state in the presence of a generic dielectric environment. We suppose that the two emitters are prepared in a symmetric or antisymmetric superposition of one ground state and one excited state and we evaluate the transition rate to the collective ground state, showing distinctive cooperative radiative features. Using a macroscopic quantum electrodynamics approach to describe the electromagnetic field, we first obtain an analytical expression for the decay rate of the two entangled two-level atoms in terms of the Green's tensor of the generic external en…
Berry's phase in Cavity QED: proposal for observing an effect of field quantization
2002
Geometric phases are well known in classical electromagnetism and quantum mechanics since the early works of Pantcharatnam and Berry. Their origin relies on the geometric nature of state spaces and has been studied in many different systems such as spins, polarized light and atomic physics. Recent works have explored their application in interferometry and quantum computation. Earlier works suggest how to observe these phases in single quantum systems adiabatically driven by external classical devices or sources, where, by classical, we mean any system whose state does not change considerably during the interaction time: an intense magnetic field interacting with a spin 1/2, or a birefringe…
Van der Waals Interactions in a Magneto-Dielectric Medium
2007
The van der Waals interaction between two ground-state atoms is calculated for two electrically or magnetically polarizable particles embedded in a dispersive magneto-dielectric medium. Unlike previous calculations which infer the atom-atom interaction from the dilute-medium limit of the macroscopic, many-body van der Waals interaction, the interaction is calculated directly for the system of two atoms in a magneto-dielectric medium. Two approaches are presented, the first based on the quantized electromagnetic field in a dispersive medium without absorption and the second on Green functions that allow for absorption. We show that the correct van der Waals interactions are obtained regardle…
Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field
2008
We consider the optimal control of quantum systems interacting non-linearly with an electromagnetic field. We propose new monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a non-standard choice of the cost which is not quadratic in the field. These algorithms can be constructed for pure and mixed-state quantum systems. The efficiency of the method is shown numerically on molecular orientation with a non-linearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well-approximated by pulses that could be implemented ex…
Time-dependent Maxwell field operators and field energy density for an atom near a conducting wall
2009
We consider the time evolution of the electric and magnetic field operators for a two-level atom, interacting with the electromagnetic field, placed near an infinite perfectly conducting wall. We solve iteratively the Heisenberg equations for the field operators and obtain the electric and magnetic energy density operators around the atom (valid for any initial state). Then we explicitly evaluate them for an initial state with the atom in its bare ground state and the field in the vacuum state. We show that the results can be physically interpreted as the superposition of the fields propagating directly from the atom and the fields reflected on the wall. Relativistic causality in the field …
A weakly-interacting many-body system of Rydberg polaritons based on electromagnetically induced transparency
2020
We proposed utilizing a medium with a high optical depth (OD) and a Rydberg state of low principal quantum number, $n$, to create a weakly-interacting many-body system of Rydberg polaritons, based on the effect of electromagnetically induced transparency (EIT). We experimentally verified the mean field approach to weakly-interacting Rydberg polaritons, and observed the phase shift and attenuation induced by the dipole-dipole interaction (DDI). The DDI-induced phase shift or attenuation can be viewed as a consequence of the elastic or inelastic collisions among the Rydberg polaritons. Using a weakly-interacting system, we further observed that a larger DDI strength caused a width of the mome…
Racecar Longitudinal Control in Unknown and Highly-Varying Driving Conditions
2020
This paper focuses on racecar longitudinal control with highly-varying driving conditions. The main factors affecting the dynamic behavior of a vehicle, including aerodynamic forces, wheel rolling resistance, traction force resulting from changing tire-road interaction as well as the occurrence of sudden wind gusts or the presence of persistent winds, are considered and assumed to have unknown models. By exploiting the theory on delayed input-state observers and using measurement data about the vehicle and wheel speeds, a dynamic filter that allows the online reconstruction of the above-mentioned unknown time-varying quantities is derived. Moreover, by exploiting the notion of effective tir…