Search results for "Quantum physic"

showing 10 items of 1596 documents

Separations in Query Complexity Based on Pointer Functions

2015

In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function $f$ on $n=2^k$ bits defined by a complete binary tree of NAND gates of depth $k$, which achieves $R_0(f) = O(D(f)^{0.7537\ldots})$. We show this is false by giving an example of a total boolean function $f$ on $n$ bits whose deterministic query complexity is $\Omega(n/\log(n))$ while its zero-error randomized query complexity is $\tilde O(\sqrt{n})$. We further show that the quantum query complexity of the same function is $\tilde O(n^{1/4})$, giving the first example of a total function with a super-quadra…

FOS: Computer and information sciencesFOS: Physical sciences0102 computer and information sciencesComputational Complexity (cs.CC)01 natural sciencesCombinatoricsArtificial Intelligence0103 physical sciences0101 mathematics010306 general physicsCommunication complexityBoolean functionQuantumMathematicsDiscrete mathematicsQuantum PhysicsBinary tree010102 general mathematicsNAND logicRandomized algorithmComputer Science - Computational ComplexityHardware and ArchitectureControl and Systems Engineering010201 computation theory & mathematicsIndependent setPointer (computer programming)Quantum algorithmQuantum Physics (quant-ph)SoftwareInformation Systems
researchProduct

Superiority of exact quantum automata for promise problems

2011

In this note, we present an infinite family of promise problems which can be solved exactly by just tuning transition amplitudes of a two-state quantum finite automata operating in realtime mode, whereas the size of the corresponding classical automata grow without bound.

FOS: Computer and information sciencesFormal Languages and Automata Theory (cs.FL)Timed automatonFOS: Physical sciencesComputer Science - Formal Languages and Automata Theory0102 computer and information sciencesω-automatonComputational Complexity (cs.CC)01 natural sciencesTheoretical Computer ScienceDeterministic automatonApplied mathematicsQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automaton0101 mathematicsMathematicsDiscrete mathematicsQuantum Physics010102 general mathematicsComputer Science ApplicationsComputer Science - Computational Complexity010201 computation theory & mathematicsSignal ProcessingAutomata theoryQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryInformation SystemsQuantum cellular automaton
researchProduct

Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations

2010

We present two new quantum algorithms. Our first algorithm is a generalization of amplitude amplification to the case when parts of the quantum algorithm that is being amplified stop at different times. Our second algorithm uses the first algorithm to improve the running time of Harrow et al. algorithm for solving systems of linear equations from O(kappa^2 log N) to O(kappa log^3 kappa log N) where \kappa is the condition number of the system of equations.

FOS: Computer and information sciencesMathematics::LogicQuantum PhysicsComputer Science - Computational ComplexityComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Quantum Physics (quant-ph)
researchProduct

Exact quantum algorithms have advantage for almost all Boolean functions

2014

It has been proved that almost all $n$-bit Boolean functions have exact classical query complexity $n$. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all $n$-bit Boolean functions can be computed by an exact quantum algorithm with less than $n$ queries. More exactly, we prove that ${AND}_n$ is the only $n$-bit Boolean function, up to isomorphism, that requires $n$ queries.

FOS: Computer and information sciencesNuclear and High Energy Physics81P68 03D15Parity functionBoolean circuitGeneral Physics and AstronomyFOS: Physical sciencesBoolean algebras canonically definedComputational Complexity (cs.CC)Theoretical Computer ScienceCombinatoricsBoolean expressionBoolean functionMathematical PhysicsComputer Science::DatabasesMathematicsDiscrete mathematicsSymmetric Boolean functionQuantum PhysicsProduct termComputer Science::Information RetrievalStatistical and Nonlinear PhysicsComputer Science - Computational ComplexityComputational Theory and MathematicsMaximum satisfiability problemQuantum Physics (quant-ph)
researchProduct

Quantum lower bound for inverting a permutation with advice

2014

Given a random permutation $f: [N] \to [N]$ as a black box and $y \in [N]$, we want to output $x = f^{-1}(y)$. Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but \emph{not} on the input $y$. Classically, there is a data structure of size $\tilde{O}(S)$ and an algorithm that with the help of the data structure, given $f(x)$, can invert $f$ in time $\tilde{O}(T)$, for every choice of parameters $S$, $T$, such that $S\cdot T \ge N$. We prove a quantum lower bound of $T^2\cdot S \ge \tilde{\Omega}(\epsilon N)$ for quantum algorithms that invert a random permutation $f$ on an $\epsilon$ fraction of…

FOS: Computer and information sciencesNuclear and High Energy PhysicsComputer Science - Cryptography and SecurityGeneral Physics and AstronomyFOS: Physical sciencesOne-way functionComputational Complexity (cs.CC)Upper and lower boundsTheoretical Computer ScienceCyclic permutationCombinatoricsPermutationMathematical PhysicsMathematicsDiscrete mathematicsQuantum PhysicsBit-reversal permutationStatistical and Nonlinear PhysicsRandom permutationComputer Science - Computational ComplexityComputational Theory and MathematicsQuantum algorithmQuantum Physics (quant-ph)Advice (complexity)Cryptography and Security (cs.CR)MathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Classical and Quantum Annealing in the Median of Three Satisfiability

2011

We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems with a unique satisfying assignment for up to N = 100 and 80 variables, respectively. In the classical limit, we employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in searching classical ground states. In the quantum limit, we determine the maximum finite correlation length along a quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our ensemble, both complexities diverge e…

FOS: Computer and information sciencesPolynomialComputational complexity theoryQuantum dynamicsFOS: Physical sciencesComputational Complexity (cs.CC)Classical limitClassical capacityQuantum mechanicsddc:530Statistical physicsALGORITHMAmplitude damping channelQuantumQuantum fluctuationCondensed Matter - Statistical MechanicsMathematicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Stochastic processQuantum annealingAdiabatic quantum computationAtomic and Molecular Physics and OpticsSatisfiabilityJComputer Science - Computational ComplexityComputerSystemsOrganization_MISCELLANEOUSQuantum algorithmPHASE-TRANSITIONSQuantum dissipationQuantum Physics (quant-ph)
researchProduct

Quadratic speedup for finding marked vertices by quantum walks

2020

A quantum walk algorithm can detect the presence of a marked vertex on a graph quadratically faster than the corresponding random walk algorithm (Szegedy, FOCS 2004). However, quantum algorithms that actually find a marked element quadratically faster than a classical random walk were only known for the special case when the marked set consists of just a single vertex, or in the case of some specific graphs. We present a new quantum algorithm for finding a marked vertex in any graph, with any set of marked vertices, that is (up to a log factor) quadratically faster than the corresponding classical random walk.

FOS: Computer and information sciencesQuadratic growthQuantum PhysicsQuantum algorithmsSpeedupMarkov chainMarkov chainsProbability (math.PR)FOS: Physical sciencesRandom walkVertex (geometry)CombinatoricsQuadratic equationSearch by random walkQuantum searchComputer Science - Data Structures and AlgorithmsFOS: MathematicsData Structures and Algorithms (cs.DS)Quantum walkQuantum algorithmQuantum Physics (quant-ph)Mathematics - ProbabilityMathematicsQuantum walks
researchProduct

Search by quantum walks on two-dimensional grid without amplitude amplification

2011

We study search by quantum walk on a finite two dimensional grid. The algorithm of Ambainis, Kempe, Rivosh (quant-ph/0402107) takes O(\sqrt{N log N}) steps and finds a marked location with probability O(1/log N) for grid of size \sqrt{N} * \sqrt{N}. This probability is small, thus amplitude amplification is needed to achieve \Theta(1) success probability. The amplitude amplification adds an additional O(\sqrt{log N}) factor to the number of steps, making it O(\sqrt{N} log N). In this paper, we show that despite a small probability to find a marked location, the probability to be within an O(\sqrt{N}) neighbourhood (at an O(\sqrt[4]{N}) distance) of the marked location is \Theta(1). This all…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Nuclear ExperimentQuantum Physics (quant-ph)
researchProduct

Quantum-over-classical Advantage in Solving Multiplayer Games

2020

We study the applicability of quantum algorithms in computational game theory and generalize some results related to Subtraction games, which are sometimes referred to as one-heap Nim games. In quantum game theory, a subset of Subtraction games became the first explicitly defined class of zero-sum combinatorial games with provable separation between quantum and classical complexity of solving them. For a narrower subset of Subtraction games, an exact quantum sublinear algorithm is known that surpasses all deterministic algorithms for finding solutions with probability $1$. Typically, both Nim and Subtraction games are defined for only two players. We extend some known results to games for t…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityComputer Science::Computer Science and Game TheoryComputer Science - Computer Science and Game TheoryComputingMilieux_PERSONALCOMPUTINGFOS: Physical sciencesComputational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science and Game Theory (cs.GT)
researchProduct

Parameterized Quantum Query Complexity of Graph Collision

2013

We present three new quantum algorithms in the quantum query model for \textsc{graph-collision} problem: \begin{itemize} \item an algorithm based on tree decomposition that uses $O\left(\sqrt{n}t^{\sfrac{1}{6}}\right)$ queries where $t$ is the treewidth of the graph; \item an algorithm constructed on a span program that improves a result by Gavinsky and Ito. The algorithm uses $O(\sqrt{n}+\sqrt{\alpha^{**}})$ queries, where $\alpha^{**}(G)$ is a graph parameter defined by \[\alpha^{**}(G):=\min_{VC\text{-- vertex cover of}G}{\max_{\substack{I\subseteq VC\\I\text{-- independent set}}}{\sum_{v\in I}{\deg{v}}}};\] \item an algorithm for a subclass of circulant graphs that uses $O(\sqrt{n})$ qu…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityComputer Science::Information RetrievalComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Quantum Physics (quant-ph)MathematicsofComputing_DISCRETEMATHEMATICS
researchProduct