Search results for "Quantum physic"

showing 10 items of 1596 documents

Algorithmic Cooling of Nuclear Spin Pairs using a Long-Lived Singlet State

2019

Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We show that significant cooling is achieved on an ensemble of spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" qubit states. The effect is demonstrated by nuclear magnetic resonance (NMR) experiments on a molecular system containing a coupled pair of near-equivalent 13C nuclei. The populations of the system are subjected to a repeating sequence of cyclic permutations separated by relaxation intervals. The long-lived nuclear singlet order is pumped well beyond the unitary lim…

Chemical Physics (physics.chem-ph)Quantum PhysicsPhysics - Chemical PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsQuantum Physics (quant-ph)
researchProduct

Theory for polaritonic quantum tunneling

2022

I investigate the tunneling decay rate of a polaritonic system formed by a strong coupling between a vacuum cavity mode and $N$ metastable systems. Using a simple model potential, I find the instanton solutions controlling the low-temperature tunneling rate. The resulting rate modification due to the cavity is proportional to the mean of the second power of the light-matter coupling. No collective effect that would enhance the rates by a factor of $\sqrt{N}$ is present, which is in line with the results in the thermal activation regime.

Chemical Physics (physics.chem-ph)Quantum PhysicsPhysics - Chemical PhysicsFOS: Physical scienceskvanttimekaniikkaQuantum Physics (quant-ph)kvanttifysiikkapolaritonit
researchProduct

The evolution and revival structure of angular momentum quantum wave packets (Tutorial)

1999

In this paper a coherent superposition of angular momentum states created by absorption of polarized light by molecules is analyzed. Attention is paid to the time evolution of wave packets representing spatial orientation of internuclear axis of diatomic molecule. Two examples are considered in detail. Molecules absorbing light in a permanent magnetic field experiencing Zeeman effect and molecules absorbing light in a permanent electric field experiencing quadratic Stark effect. In a magnetic field we have a wave packet that evolves in time exactly as classical dipole oscillator in a permanent magnetic field. In the second case we have the wave packet that goes through periodical changes of…

Chemical Physics (physics.chem-ph)Quantum PhysicsPhysics Education (physics.ed-ph)Physics - Chemical PhysicsPhysics - Physics EducationFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Cavity-induced bifurcation in classical rate theory

2022

We show how coupling an ensemble of bistable systems to a common cavity field affects the collective stochastic behavior of this ensemble. In particular, the cavity provides an effective interaction between the systems, and parametrically modifies the transition rates between the metastable states. We predict that the cavity induces a collective phase transition at a critical temperature which depends linearly on the number of systems. It shows up as a spontaneous symmetry breaking where the stationary states of the bistable system bifurcate. We observe that the transition rates slow down independently of the phase transition, but the rate modification vanishes for alternating signs of the …

Chemical Physics (physics.chem-ph)Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Physics - Chemical PhysicsFOS: Physical sciencesPhysics::OpticsQuantum Physics (quant-ph)Condensed Matter - Statistical Mechanics
researchProduct

Geometry of Degeneracy in Potential and Density Space

2022

In a previous work [J. Chem. Phys. 155, 244111 (2021)], we found counterexamples to the fundamental Hohenberg-Kohn theorem from density-functional theory in finite-lattice systems represented by graphs. Here, we demonstrate that this only occurs at very peculiar and rare densities, those where density sets arising from degenerate ground states, called degeneracy regions, touch each other or the boundary of the whole density domain. Degeneracy regions are shown to generally be in the shape of the convex hull of an algebraic variety, even in the continuum setting. The geometry arising between density regions and the potentials that create them is analyzed and explained with examples that, amo…

Chemical Physics (physics.chem-ph)Quantum Physicschemical physicsPhysics and Astronomy (miscellaneous)FOS: Physical sciencesmatemaattinen fysiikkaMathematical Physics (math-ph)Atomic and Molecular Physics and Opticsmathematical physicsquantum physicsPhysics - Chemical PhysicskvanttifysiikkaQuantum Physics (quant-ph)Mathematical Physics
researchProduct

Density-Functional Theory on Graphs

2021

The principles of density-functional theory are studied for finite lattice systems represented by graphs. Surprisingly, the fundamental Hohenberg–Kohn theorem is found void, in general, while many insights into the topological structure of the density-potential mapping can be won. We give precise conditions for a ground state to be uniquely v-representable and are able to prove that this property holds for almost all densities. A set of examples illustrates the theory and demonstrates the non-convexity of the pure-state constrained-search functional. peerReviewed

Chemical Physics (physics.chem-ph)Quantum PhysicstiheysfunktionaaliteoriaGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyMathematical Physics (math-ph)021001 nanoscience & nanotechnology01 natural sciencesPhysics - Chemical Physics0103 physical scienceskvanttimekaniikkaPhysical and Theoretical Chemistry010306 general physics0210 nano-technologyQuantum Physics (quant-ph)Mathematical Physics
researchProduct

How Low Can Approximate Degree and Quantum Query Complexity Be for Total Boolean Functions?

2012

It has long been known that any Boolean function that depends on n input variables has both degree and exact quantum query complexity of Omega(log n), and that this bound is achieved for some functions. In this paper we study the case of approximate degree and bounded-error quantum query complexity. We show that for these measures the correct lower bound is Omega(log n / loglog n), and we exhibit quantum algorithms for two functions where this bound is achieved.

Computational complexity theoryGeneral MathematicsFOS: Physical sciences0102 computer and information sciences02 engineering and technology01 natural sciencesUpper and lower boundsTheoretical Computer ScienceComplexity indexCombinatorics0202 electrical engineering electronic engineering information engineeringBoolean functionMathematicsQuantum computerDiscrete mathematicsQuantum PhysicsApproximation theoryDegree (graph theory)TheoryofComputation_GENERALApproximation algorithmComputational MathematicsComputational Theory and Mathematics010201 computation theory & mathematics020201 artificial intelligence & image processingQuantum algorithmQuantum Physics (quant-ph)Quantum complexity theory2013 IEEE Conference on Computational Complexity
researchProduct

Shuttling-Based Trapped-Ion Quantum Information Processing

2020

Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitra…

Computer Networks and CommunicationsComputer scienceFOS: Physical sciences.Arbitrary waveform generator7. Clean energy01 natural sciences010305 fluids & plasmas//purl.org/becyt/ford/1 [https]0103 physical sciencesElectronic engineeringWaveformddc:530Electrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsQuantum information scienceQuantum computerHardware architectureQuantum PhysicsControl reconfiguration//purl.org/becyt/ford/1.3 [https]Condensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyComputational Theory and MathematicsQubitQuantum Physics (quant-ph)
researchProduct

Robust entanglement preparation against noise by controlling spatial indistinguishability

2019

Initialization of composite quantum systems into highly entangled states is usually a must to allow their use for quantum technologies. However, the presence of unavoidable noise in the preparation stage makes the system state mixed, thus limiting the possibility of achieving this goal. Here we address this problem in the context of identical particle systems. We define the entanglement of formation for an arbitrary state of two identical qubits within the operational framework of spatially localized operations and classical communication (sLOCC). We then introduce an entropic measure of spatial indistinguishability under sLOCC as an information resource. We show that spatial indistinguisha…

Computer Networks and CommunicationsComputer scienceInitializationFOS: Physical sciencesContext (language use)Quantum entanglementNoise (electronics)Measure (mathematics)lcsh:QA75.5-76.95Settore FIS/03 - Fisica Della MateriaEntanglementComputer Science (miscellaneous)Statistical physicsQuantumQuantum PhysicsQuantum resourcesStatistical and Nonlinear PhysicsQuantum Physicslcsh:QC1-999Quantum technologyComputational Theory and MathematicsQubitOpen quantum systemlcsh:Electronic computers. Computer scienceQuantum Physics (quant-ph)lcsh:PhysicsQuantum indistinguishability
researchProduct

Energy-efficient quantum computing

2016

In the near future, a major challenge in quantum computing is to scale up robust qubit prototypes to practical problem sizes and to implement comprehensive error correction for computational precision. Due to inevitable quantum uncertainties in resonant control pulses, increasing the precision of quantum gates comes with the expense of increased energy consumption. Consequently, the power dissipated in the vicinity of the processor in a well-working large-scale quantum computer seems unacceptably large in typical systems requiring low operation temperatures. Here, we introduce a method for qubit driving and show that it serves to decrease the single-qubit gate error without increasing the a…

Computer Networks and CommunicationsComputer scienceQC1-999FOS: Physical sciences01 natural sciences010305 fluids & plasmasEntanglementComputer Science::Emerging TechnologiesQuantum gateenergy consumption0103 physical sciencesComputer Science (miscellaneous)Electronic engineering010306 general physicsQuantumQuantum computerQuantum PhysicsPhysicskvanttitietokoneetStatistical and Nonlinear PhysicsenergiankulutusQA75.5-76.95Energy consumptionPower (physics)Computational Theory and MathematicsElectronic computers. Computer scienceQubitlämmön johtuminenQubitQuantum gatesQuantum Physics (quant-ph)Error detection and correctionEfficient energy use
researchProduct