Search results for "Quantum process"
showing 10 items of 47 documents
Quantum annealing with manufactured spins.
2011
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. Johnson et al. use quantum annealing to find the ground state of an artificial Ising spin system comprised of an array of eight superconducting flux qubits with programmable spin–spin couplings. With an increased number of spins, the system may provide a practical physical means to implement quantum algorithms, possibly enabling more effective approaches towards solving certain classes of hard combinatorial…
Quantum Zeno subspaces induced by temperature
2011
We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.
Master equations for correlated quantum channels
2012
We derive the general form of a master equation describing the interaction of an arbitrary multipartite quantum system, consisting of a set of subsystems, with an environment, consisting of a large number of sub-envirobments. Each subsystem "collides" with the same sequence of sub-environments which, in between the collisions, evolve according to a map that mimics relaxations effects. No assumption is made on the specific nature of neither the system nor the environment. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Linblad super-operator contains pairwise term…
Asymptotic properties of the Dirac quantum cellular automaton
2016
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter, which plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long term probability distribution. It …
Creating quantum correlations through local non-unitary memoryless channels
2012
We show that two qubits, initially in a fully classical state, can develop significant quantum correlations as measured by the quantum discord (QD) under the action of a local memoryless noise (specifically we consider the case of a Markovian amplitude-damping channel). This is analytically proven after deriving in a compact form the QD for the class of separable states involved in such a process. We provide a picture in the Bloch sphere that unambiguously highlights the physical mechanism behind the effect regardless of the specific measure of QCs adopted.
Entropy production and information fluctuations along quantum trajectories
2013
Employing the stochastic wave function method, we study quantum features of stochastic entropy production in nonequilibrium processes of open systems. It is demonstarted that continuous measurements on the environment introduce an additional, non-thermal contribution to the entropy flux, which is shown to be a direct consequence of quantum fluctuations. These features lead to a quantum definition of single trajectory entropy contributions, which accounts for the difference between classical and quantum trajectories and results in a quantum correction to the standard form of the integral fluctuation theorem.
Quantum chimera states
2014
Abstract We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
Localization and diffusion in Ising-type quantum networks
2001
We investigate the effect of phase randomness in Ising-type quantum networks. These networks model a large class of physical systems. They describe micro- and nanostructures or arrays of optical elements such as beam splitters (interferometers) or parameteric amplifiers. Most of these stuctures are promising candidates for quantum information processing networks. We demonstrate that such systems exhibit two very distinct types of behaviour. For certain network configurations (parameters), they show quantum localization similar to Anderson localization whereas classical stochastic behaviour is observed in other cases. We relate these findings to the standard theory of quantum localization.
Measuring the heat exchange of a quantum process
2014
Very recently, interferometric methods have been proposed to measure the full statistics of work performed on a driven quantum system [Dorner et al. Phys. Rev. Lett. 110 230601 (2013)] and [Mazzola et al. Phys. Rev. Lett. 110 230602 (2013)]. The advantage of such schemes is that they replace the necessity to make projective measurements by performing phase estimation on an appropriately coupled ancilla qubit. These proposals are one possible route to the tangible experimental exploration of quantum thermodynamics, a subject which is the centre of much current attention due to the current control of mesoscopic quantum systems. In this Letter we demonstrate that a modification of the phase es…
Oscillations of the purity in the repeated-measurement-based generation of quantum states
2008
Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {\em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete appl…