Search results for "Quantum state"
showing 10 items of 149 documents
Tomographic approach to the violation of Bell's inequalities for quantum states of two qutrits
2009
The tomographic method is employed to investigate the presence of quantum correlations in two classes of parameter-dependent states of two qutrits. The violation of some Bell's inequalities in a wide domain of the parameter space is shown. A comparison between the tomographic approach and a recent method elaborated by Wu, Poulsen and Molmer shows the better adequacy of the former method with respect to the latter one.
Quantum Nondemolition Gate Operations and Measurements in Real Time on Fluctuating Signals
2017
We demonstrate an optical quantum nondemolition (QND) interaction gate with a bandwidth of about 100 MHz. Employing this gate, we are able to perform QND measurements in real time on randomly fluctuating signals. Our QND gate relies on linear optics and offline-prepared squeezed states. In contrast to previous demonstrations on narrow sideband modes, our gate is compatible with quantum states temporally localized in a wave-packet mode including non-Gaussian quantum states. This is the cornerstone of realizing quantum error correction and universal gate operations.
All-Optical Storage of Phase-Sensitive Quantum States of Light.
2019
We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form $\alpha |0\rangle + \beta e^{i\theta} |1\rangle$ for an optical quantized oscillator mode. For this purpose, we introduce a phase-probing mechanism to a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wign…
Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator
2016
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magne…
Unified view of correlations using the square-norm distance
2012
The distance between a quantum state and its closest state not having a certain property has been used to quantify the amount of correlations corresponding to that property. This approach allows a unified view of the various kinds of correlations present in a quantum system. In particular, using relative entropy as a distance measure, total correlations can be meaningfully separated into a quantum part and a classical part thanks to an additive relation involving only the distances between states. Here we investigate a unified view of correlations using as a distance measure the square norm, which has already been used to define the so-called geometric quantum discord. We thus also consider…
Time-energy filtering of single electrons in ballistic waveguides
2019
Characterizing distinct electron wave packets is a basic task for solid-state electron quantum optics with applications in quantum metrology and sensing. A important circuit element for this task is a non-stationary potential barrier than enables backscattering of chiral particles depending on their energy and time of arrival. Here we solve the quantum mechanical problem of single-particle scattering by a ballistic constriction in an fully depleted quantum Hall system under spatially uniform but time-dependent electrostatic potential modulation. The result describes electrons distributed in time-energy space according to a modified Wigner quasiprobability distribution and scattered with an …
High-dimensional one-way quantum processing implemented on d-level cluster states
2019
Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithm…
Fast Control of Quantum States in Quantum Dots: Limits due to Decoherence
2005
We study the kinetics of confined carrier-phonon system in a quantum dot under fast optical driving and discuss the resulting limitations to fast coherent control over the quantum state in such systems.
Phase Transitions in Adsorbates with Internal Quantum States
1993
In principle, phase transitions in realistic systems at low temperatures should be studied including quantum effects. However, a full quantum treatment of all degrees of freedom in a simulation is restricted to small systems, if possible at all. In some cases, as is demonstrated for adsorbates, some degrees of freedom can still be modelled classically even at low temperatures, whereas only for the rest a quantum treatment is unavoidable. The path-integral Monte Carlo approach allows a systematic distinction between classical and quantum degrees of freedom in many-body systems. Using this technique in combination with finite-size methods, the complex phase diagram of a two-dimensional model …
Holographic encoding of universality in corner spectra
2017
In numerical simulations of classical and quantum lattice systems, 2d corner transfer matrices (CTMs) and 3d corner tensors (CTs) are a useful tool to compute approximate contractions of infinite-size tensor networks. In this paper we show how the numerical CTMs and CTs can be used, {\it additionally\/}, to extract universal information from their spectra. We provide examples of this for classical and quantum systems, in 1d, 2d and 3d. Our results provide, in particular, practical evidence for a wide variety of models of the correspondence between $d$-dimensional quantum and $(d+1)$-dimensional classical spin systems. We show also how corner properties can be used to pinpoint quantum phase …