Search results for "Quantum state"

showing 10 items of 149 documents

Teleportation between distant qudits via scattering of mobile qubits

2010

We consider a one-dimensional (1D) structure where non-interacting spin-$s$ scattering centers, such as quantum impurities or multi-level atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with {path} detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. {No action over the internal quantum state of both the spin-$s$ particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-seperated static entities in nanostructures by exploiting a very low-control mechanism, namely scattering.

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesQuantum entanglementTeleportationteleportation qubitsSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQuantum stateQuantum mechanicsQubitMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum informationSuperconducting quantum computingQuantum information scienceQuantum Physics (quant-ph)Quantum teleportation
researchProduct

Quantum Zeno subspaces induced by temperature

2011

We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

PhysicsQuantum PhysicsDecoherence-free subspacesSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStatistical MechanicFOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaOpen quantum systemPOVMQuantum Zeno EffectOpen SystemsQuantum stateQuantum processQuantum mechanicsQuantum systemQuantum statistical mechanicsQuantum Physics (quant-ph)Quantum Zeno effect
researchProduct

CP symmetry and thermal effects on Dirac bi-spinor spin–parity local correlations

2018

Intrinsic quantum correlations supported by the $SU(2)\otimes SU(2)$ structure of the Dirac equation used to describe particle/antiparticle states, optical ion traps and bilayer graphene are investigated and connected to the description of local properties of Dirac bi-spinors. For quantum states driven by Dirac-like Hamiltonians, quantum entanglement and geometric discord between spin and parity degrees of freedom - sometimes mapped into equivalent low energy internal degrees of freedom - are obtained. Such \textit{spin-parity} quantum correlations and the corresponding nonlocal intrinsic structures of bi-spinor fermionic states can be classified in order to relate quantum observables to th…

PhysicsQuantum PhysicsFOS: Physical sciencesGeneral Physics and AstronomyCHSH inequalityObservableParity (physics)Quantum entanglement01 natural sciences010305 fluids & plasmassymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Local hidden variable theoryQuantum stateQuantum mechanicsDirac equation0103 physical sciencessymbolsQuantum Physics (quant-ph)010306 general physicsQuantum
researchProduct

Device-independent quantum reading and noise-assisted quantum transmitters

2014

In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by enhanced state distinguishability. Here we show that the enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield a higher quantum efficiency compared to coherent thermal quan…

PhysicsQuantum PhysicsField (physics)TransmitterGeneral Physics and AstronomyFOS: Physical sciencesMathematical Physics (math-ph)Noise (electronics)Condensed Matter - Other Condensed MatterQuantum technologyQuantum stateQuantum mechanicsChernoff boundQuantum efficiencyQuantum Physics (quant-ph)QuantumMathematical PhysicsQCOther Condensed Matter (cond-mat.other)
researchProduct

Information geometry of Gaussian channels

2009

We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated from distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desir…

PhysicsQuantum PhysicsGaussianFOS: Physical sciencesMathematical Physics (math-ph)01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasStatistical manifoldIntrinsic metricCondensed Matter - Other Condensed Mattersymbols.namesakeQuantum mechanics0103 physical sciencesMetric (mathematics)symbolsApplied mathematicsInformation geometryFidelity of quantum statesQuantum Physics (quant-ph)010306 general physicsQuantum information scienceFisher information metricMathematical PhysicsOther Condensed Matter (cond-mat.other)
researchProduct

Role of temperature in the occurrence of some Zeno phenomena

2012

Temperature can be responsible for strengthening effective couplings between quantum states, determining a hierarchy of interactions, and making it possible to establish such dynamical regimes known as Zeno dynamics, wherein a strong coupling can hinder the effects of a weak one. The relevant physical mechanisms which connect the structure of a thermal state with the appearance of special dynamical regimes are analyzed in depth.

PhysicsQuantum PhysicsHierarchy (mathematics)Structure (category theory)FOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaClassical mechanicsQuantum stateStrong couplingQuantum Zeno effectThermal stateQuantum Physics (quant-ph)Zeno's paradoxesQuantum statistical mechanics
researchProduct

Phase Locking between Two All-Optical Quantum Memories.

2020

Optical approaches to quantum computation require the creation of multi-mode photonic quantum states in a controlled fashion. Here we experimentally demonstrate phase locking of two all-optical quantum memories, based on a concatenated cavity system with phase reference beams, for the time-controlled release of two-mode entangled single-photon states. The release time for each mode can be independently determined. The generated states are characterized by two-mode optical homodyne tomography. Entanglement and nonclassicality are preserved for release-time differences up to 400 ns, confirmed by logarithmic negativities and Wigner-function negativities, respectively.

PhysicsQuantum PhysicsMulti-mode optical fiberbusiness.industryPhase (waves)FOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyQuantum entanglement01 natural sciencesDirect-conversion receiverQuantum stateQuantum mechanics0103 physical sciencesPhotonicsQuantum Physics (quant-ph)010306 general physicsbusinessQuantumQuantum computerPhysical review letters
researchProduct

Quantum motion of a neutron in a wave-guide in the gravitational field

2006

We study theoretically the quantum motion of a neutron in a horizontal waveguide in the gravitational field of the Earth. The waveguide in question is equipped with a mirror below and a rough surface absorber above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with sufficiently high transversal energy but transmits low-energy states. The states transmitted are determined mainly by the potential well formed by the gravitational field of the Earth and the mirror. The formalism developed for quantum motion in an absorbing waveguide is applied to the description of the recent experiment on the observation of the quantum states of neutrons in th…

PhysicsQuantum PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsFOS: Physical sciences04.80.Cc 04.25.Nx01 natural scienceslaw.inventionFormalism (philosophy of mathematics)Gravitational fieldQuantum statelawQuantum mechanicsRough surface[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesNeutron010306 general physicsQuantum Physics (quant-ph)WaveguideQuantumGravitational redshift
researchProduct

Non-locality and causal evolution in QFT

2006

Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is o…

PhysicsQuantum PhysicsOperator (physics)photon| operatorsFOS: Physical sciencesPropagatorObservableExpectation valueCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCausality (physics)Quantum nonlocalityQuantum statequantum electrodynamicsQuantum Physics (quant-ph)Scalar fieldMathematical physicsJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Creation, storage, and on-demand release of optical quantum states with a negative Wigner function

2013

Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources were also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as anti-bunchin…

PhysicsQuantum PhysicsPhotonbusiness.industryPhysicsQC1-999General Physics and AstronomyFOS: Physical sciencesQuantum stateQuantum mechanicsComputer data storageLevel structureWigner distribution functionQuantum informationbusinessQuantum Physics (quant-ph)RandomnessGenerator (mathematics)
researchProduct