Search results for "Quasimolecules"

showing 4 items of 4 documents

Study of the benzene⋅N2 intermolecular potential-energy surface

2003

The intermolecular potential-energy surface pertaining to the interaction between benzene and N2 is investigated theoretically and experimentally. Accurate intermolecular interaction energies are evaluated for the benzene–N2 van der Waals complex using the coupled cluster singles and doubles including connected triples [CCSD(T)] method and the aug-cc-pVDZ basis set extended with a set of 3s3p2d1f1g midbond functions. After fitting the energies to an analytic function, the intermolecular Schrödinger equation is solved to yield energies, rotational constants, and Raman-scattering coefficients for the lowest intermolecular levels of several benzene–N2 isotopomers. Experimentally, intermolecula…

Potential Energy SurfacesCoupled Cluster CalculationsNitrogenBinding energyGeneral Physics and AstronomyPotential Energy Functionssymbols.namesakePhysics and Astronomy (all)IsomerismQuasimoleculesRotational IsomerismPhysics::Atomic and Molecular ClustersQuantum-mechanical explanation of intermolecular interactionsRotational StatesPhysical and Theoretical ChemistryPhysics::Chemical Physics:FÍSICA::Química física [UNESCO]Basis setSchrodinger EquationChemistryOrganic CompoundsIsotope EffectsIntermolecular forceStimulated Raman ScatteringUNESCO::FÍSICA::Química físicaCoupled clustersymbolsAtomic physicsvan der Waals forceOrganic Compounds ; Nitrogen ; Quasimolecules ; Potential Energy Surfaces ; Potential Energy Functions ; Coupled Cluster Calculations ; Rotational States ; Isomerism ; Isotope Effects ; Stimulated Raman Scattering ; Rotational Isomerism ; Schrodinger EquationRaman spectroscopyRaman scattering
researchProduct

Computational and experimental investigation of intermolecular states and forces in the benzene-helium van der Waals complex

2003

A study of the intermolecular potential-energy surface (IPS) and the intermolecular states of the perprotonated and perdeuterated benzene–He complex is reported. From a fit to ab initio data computed within the coupled cluster singles and doubles including connected triples model for 280 interaction geometries, an analytic IPS including two- to four-body atom–atom terms is obtained. This IPS, and two other Lennard-Jones atom–atom surfaces from the literature, are each employed in dynamically exact (within the rigid-monomer approximation) calculations of J = 0 intermolecular states of the isotopomers. Rotational constants and Raman-scattering coefficients for intermolecular vibrational trans…

Potential Energy SurfacesCoupled Cluster CalculationsRaman SpectraHelium Neutral AtomsOrganic Compounds ; Helium Neutral Atoms ; Intermolecular Mechanics ; Quasimolecules ; Potential Energy Surfaces ; Ab Initio Calculations ; Coupled Cluster Calculations ; Lennard-Jones Potential ; Isotope Effects ; Isomerism ; Rotational States ; Raman SpectraAb initioGeneral Physics and AstronomyIsotopomerssymbols.namesakePhysics and Astronomy (all)IsomerismAb initio quantum chemistry methodsQuasimoleculesKinetic isotope effectPhysics::Atomic and Molecular ClustersRotational StatesPhysics::Atomic PhysicsLennard-Jones PotentialPhysics::Chemical PhysicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]ChemistryOrganic CompoundsIsotope EffectsIntermolecular forceUNESCO::FÍSICA::Química físicaCoupled clusterLennard-Jones potentialsymbolsIntermolecular MechanicsAtomic physicsvan der Waals forceAb Initio Calculations
researchProduct

Rovibrational structure of the Ar–CO complex based on a novel three-dimensional ab initio potential

2002

The first three-dimensional ab initio intermolecular potential energy surface of the Ar–CO van der Waals complex is calculated using the coupled cluster singles and doubles including connected triples model and the augmented correlation-consistent polarized valence quadruple zeta (aug-cc-pVQZ) basis set extended with a (3s3p2d1f1g) set of midbond functions. The three-dimensional surface is averaged over the three lowest vibrational states of CO. Rovibrational energies are calculated up to 50 cm−1 above the ground state, thus enabling comprehensive comparison between theory and available experimental data as well as providing detailed guidance for future spectroscopic investigations of highe…

Potential Energy SurfacesCoupled Cluster CalculationsAb initioGeneral Physics and AstronomyPhysics and Astronomy (all)symbols.namesakeAb initio quantum chemistry methodsQuasimoleculesPhysics::Atomic and Molecular ClustersVibrational StatesPhysics::Atomic PhysicsPhysics::Chemical PhysicsPhysical and Theoretical ChemistryArgon:FÍSICA::Química física [UNESCO]Rotational-Vibrational StatesBasis setValence (chemistry)ChemistryRotational–vibrational spectroscopyCarbon CompoundsUNESCO::FÍSICA::Química físicaCoupled clustersymbolsArgon ; Carbon Compounds ; Quasimolecules ; Rotational-Vibrational States ; Potential Energy Surfaces ; Ab Initio Calculations ; Intermolecular Mechanics ; Coupled Cluster Calculations ; Vibrational StatesIntermolecular Mechanicsvan der Waals forceAtomic physicsGround stateAb Initio Calculations
researchProduct

Theoretical absorption spectrum of the Ar–CO van der Waals complex

2003

The three-dimensional intermolecular electric dipole moment surface of Ar–CO is calculated at the coupled cluster singles and doubles level of theory with the aug-cc-pVTZ basis set extended with a 3s3p2d1f1g set of midbond functions. Using the rovibrational energies and wave functions of our recent study [J. Chem. Phys. 117, 6562 (2002)], temperature-dependent spectral intensities are evaluated and compared to available experimental data. Based on the theoretical spectrum, alternative assignments of the experimentally observed lines in the fundamental band of CO around 2160 and 2166 cm−1 are suggested. Thomas.Bondo@uv.es

Coupled Cluster CalculationsAbsorption spectroscopyGeneral Physics and AstronomySpectral Line IntensitySpectral linesymbols.namesakePhysics and Astronomy (all)Argon ; Carbon Compounds ; Quasimolecules ; Molecular Moments ; Coupled Cluster Calculations ; Rotational-Vibrational States ; Spectral Line Intensity ; SpectraQuasimoleculesPhysics::Atomic and Molecular ClustersArgonPhysics::Chemical PhysicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Rotational-Vibrational StatesBasis setMolecular MomentsChemistryIntermolecular forceRotational–vibrational spectroscopySpectraCarbon CompoundsUNESCO::FÍSICA::Química físicaElectric dipole momentCoupled clusterPhysics::Space Physicssymbolsvan der Waals forceAtomic physics
researchProduct