Search results for "Quasivariety"

showing 4 items of 4 documents

The Equationally-Defined Commutator in Quasivarieties Generated by Two-Element Algebras

2018

The notion of the equationally-defined commutator was introduced and thoroughly investigated in (Czelakowski, 2015). In this work the properties of the equationally-defined commutator in quasivarieties generated by two-element algebras are examined. It is proved: If a quasivariety Q is generated by a finite set of two-element algebras, then the equationally-defined commutator of Q is additive (Theorem 3.1) Moreover it satisfies the associativity law (Theorem 3.6). The second result is strengthened if the quasivariety is generated by a single two-element algebra 2: If Q = SP(2), then the equationally-defined commutator of Q universally validates one of the following laws: [x,y] = x^y or [x,y…

CommutatorPure mathematicsQuasivariety010102 general mathematicsCharacterization (mathematics)01 natural sciencesCongruence (geometry)0103 physical sciences010307 mathematical physics0101 mathematicsAbelian groupElement (category theory)Finite setAssociative propertyMathematics
researchProduct

The parameterized local deduction theorem for quasivarieties of algebras and its application

1996

Let τ be an algebraic type. To each classK of τ-algebras a consequence relation ⊧ K defined on the set of τ-equations is assigned. Some weak forms of the deduction theorem for ⊧ K and their algebraic counterparts are investigated. The (relative) congruence extension property (CEP) and its variants are discussed.CEP is shown to be equivalent to a parameter-free form of the deduction theorem for the consequence ⊧ K .CEP has a strong impact on the structure ofK: for many quasivarietiesK,CEP implies thatK is actually a variety. This phenomenon is thoroughly discussed in Section 5. We also discuss first-order definability of relative principal congruences. This property is equivalent to the fact…

Discrete mathematicsPure mathematicsDeduction theoremAlgebra and Number TheoryFundamental theoremQuasivarietyNo-go theoremStructure (category theory)Congruence relationVariety (universal algebra)Finite setMathematicsAlgebra Universalis
researchProduct

Triangular irreducibility of congruences in quasivarieties

2014

Certain forms of irreducibility as well as of equational definability of relative congruences in quasivarieties are investigated. For any integer \({m \geqslant 3}\) and a quasivariety Q, the notion of an m-triangularily meet-irreducible Q-congruence in the algebras of Q is defined. In Section 2, some characterizations of finitely generated quasivarieties involving this notion are provided. Section 3 deals with quasivarieties with equationally definable m-triangular meets of relatively principal congruences. References to finitely based quasivarieties and varieties are discussed.

Section (fiber bundle)Mathematics::LogicPure mathematicsAlgebra and Number TheoryQuasivarietyIntegerMathematics::General MathematicsMathematics::Rings and AlgebrasMathematics::General TopologyIrreducibilityFinitely-generated abelian groupCongruence relationMathematicsAlgebra Universalis
researchProduct

The Equationally-Defined Commutator in Quasivarieties Generated by Two-Element Algebras

2018

The notion of the equationally-defined commutator was introduced and thoroughly investigated in (Czelakowski, 2015). In this work the properties of the equationally-defined commutator in quasivarieties generated by two-element algebras are examined. It is proved: If a quasivariety Q is generated by a finite set of two-element algebras, then the equationally-defined commutator of Q is additive (Theorem 3.1) Moreover it satisfies the associativity law (Theorem 3.6). The second result is strengthened if the quasivariety is generated by a single two-element algebra 2: If Q = SP(2), then the equationally-defined commutator of Q universally validates one of the following laws: [x,y] = x^y or [x,y…

quasivarietycongruencecommutator equationconsequence operationthe equationally-defined commutator
researchProduct