Search results for "Qubit"

showing 10 items of 279 documents

Approximate supervised learning of quantum gates via ancillary qubits

2018

We present strategies for the training of a qubit network aimed at the ancilla-assisted synthesis of multi-qubit gates based on a set of restricted resources. By assuming the availability of only time-independent single and two-qubit interactions, we introduce and describe a supervised learning strategy implemented through momentum-stochastic gradient descent with automatic differentiation methods. We demonstrate the effectiveness of the scheme by discussing the implementation of non-trivial three qubit operations, including a Quantum Fourier Transform (QFT) and a half-adder gate.

Theoretical computer sciencePhysics and Astronomy (miscellaneous)Computer scienceSupervised learningQuantum Physicsquantum-computation01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Quantum-informationComputer Science::Emerging TechnologiesQuantum gatemachine learningquantum informationQubit0103 physical sciences/dk/atira/pure/subjectarea/asjc/3100/3101Hardware_ARITHMETICANDLOGICSTRUCTURESQuantum informationquantum-gates010306 general physicsQuantum computer
researchProduct

Implementation of single-qubit quantum gates by adiabatic passage and static laser phases

2006

International audience; We propose and analyse experimentally feasible implementations of single-qubit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by elliptically polarized pulsed laser fields, in part based on a proposal by Kis and Renzoni [Z. Kis, F. Renzoni, Phys. Rev. A 65 (2002) 032318]. These techniques require only the control of the relative phase of the driving fields but do not involve any dynamical or geometric phases, which makes it independent of the other interaction details: detuning, pulse shapes, pulse areas and pulse durations. The suggested techniques are immune to spontaneous emission since the qubit mani…

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Stimulated Raman adiabatic passage7. Clean energy01 natural sciences010305 fluids & plasmasQuantum gateOptics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencesSpontaneous emissionElectrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsAdiabatic processComputingMilieux_MISCELLANEOUS[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Quantum computerPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]business.industryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)Geometric phase[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Qubitbusiness
researchProduct

Coherent superposition of current flows in an atomtronic quantum interference device

2015

We consider a correlated Bose gas tightly confined into a ring shaped lattice, in the presence of an artificial gauge potential inducing a persistent current through it. A weak link painted on the ring acts as a source of coherent back-scattering for the propagating gas, interfering with the forward scattered current. This system defines an atomic counterpart of the rf-SQUID: the atomtronics quantum interference device (AQUID). The goal of the present study is to corroborate the emergence of an effective two-level system in such a setup and to assess its quality, in terms of its inner resolution and its separation from the rest of the many-body spectrum, across the different physical regime…

[PHYS]Physics [physics]PhysicsMesoscopic physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Bose gasBand gapGeneral Physics and AstronomyFOS: Physical sciencesPersistent currentPersistent currentsSuperposition principleAtomtronic quantum interference device; One-dimensional bosons; Persistent currents; Physics and Astronomy (all)Physics and Astronomy (all)Quantum Gases (cond-mat.quant-gas)Quantum mechanicsLattice (order)Qubit:Science::Physics::Atomic physics [DRNTU]AtomtronicsAtomtronic quantum interference deviceOne-dimensional bosons[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Condensed Matter - Quantum GasesComputingMilieux_MISCELLANEOUS
researchProduct

Kerr Combs and Telecommunications Components for the Generation and High-Dimensional Quantum Processing of d-Level Cluster States

2019

Large and complex optical quantum states are a key resource for fundamental science and applications such as quantum communications, information processing, and metrology. In this context, cluster states are a particularly important class because they enable the realization of universal quantum computers by means of the so-called ‘one-way’ scheme, where processing operations are performed through measurements on the state. While two-level (i.e. qubit) cluster states have been realized thus far, further boosting this computational resource by increasing the number of particles comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to …

business.industryQuantum stateComputer scienceQubitElectronic engineeringQuantum entanglementQuantum channelPhotonicsbusinessComputational resourceQuantum information scienceQuantum computer2019 21st International Conference on Transparent Optical Networks (ICTON)
researchProduct

Near Isotropic D4d Spin Qubits as Nodes of a Gd(III)-Based Metal-Organic Framework

2021

Embedding coherent spin motifs in reproducible molecular building blocks is a promising pathway for the realization of quantum technologies. Three-dimensional (3D) MOFs are a versatile platform for the rational design of extended structures employing coordination chemistry. Here, we report the synthesis and characterization of a gadolinium(III)-based MOF, [Gd(bipyNO)4](TfO)3·xMeOH (bipyNO = bipyridine,N,N′-dioxide; TfO = triflate; and MeOH = methanol) (quMOF-1), which presents a unique coordination geometry that leads to a tiny magnetic anisotropy (in terms of D, an equivalent zero-field splitting would be achieved by D = 0.006 cm–1) even compared with regular Gd(III) complexes. Pulsed elec…

chemistry.chemical_classificationRabi cycle010405 organic chemistryChemistryPulsed EPRQuímica010402 general chemistry01 natural sciencesMolecular physicsArticle0104 chemical sciences3. Good healthCoordination complexInorganic ChemistryMagnetic anisotropyBipyridinechemistry.chemical_compoundQubitPhysical and Theoretical ChemistrySpin (physics)Coordination geometry
researchProduct

Estudio de propiedades magnéticas en compuestos de coordinación multifuncionales

2021

En las últimas décadas, las moléculas imán han atraído la atención de la comunidad científica, puesto que permitirían superar las limitaciones actuales de almacenamiento en dispositivos y, también, por su interés en espintrónica. El descubrimiento de las moléculas imán polinucleares (SMMs) fue impactante, pues presentan lenta relajación de la magnetización por debajo de una cierta temperatura. Por tanto, el desarrollo de moléculas imán mononucleares (SIMs) basadas en iones CoII, como único centro paramagnético responsable de ese comportamiento, son de interés por su alto espín (S = 3/2) y un inherente desdoblamiento a campo cero (zfs), que se puede modificar dependiendo de la geometría impu…

cobaltomultifuncionalUNESCO::QUÍMICAqu-gateSIM:QUÍMICA [UNESCO]SMMcoordinaciónmagnéticoSingle-molecule Magnetcobalto(II)funcionalizacióncompuestoSingle-ion MagnetoctaédricoimánMoS2magnetismoqubitmolécula
researchProduct

Dissipative dynamics of two coupled qubits: a short review of some recent results

2011

In this paper, we review some results concerning the dissipative dynamics of two coupled qubits interacting with independent reservoirs. In particular, we focus on the role of counter-rotating terms in the qubit-qubit coupling, showing that their presence is the origin of stationary entanglement, which also turns out to be robust with respect to temperature. We also discuss the performances of different non-Markovian approaches in the description of the qubit-qubit dynamics, by considering a simplified exactly solvable Hamiltonian model.

decoerenzaqubit accoppiatiSettore FIS/03 - Fisica Della Materiadissipazione
researchProduct

Comparison of non-Markovianity criteria in a qubit system under random external fields

2013

We give the map representing the evolution of a qubit under the action of non-dissipative random external fields. From this map we construct the corresponding master equation that in turn allows us to phenomenologically introduce population damping of the qubit system. We then compare, in this system, the time-regions when non-Markovianity is present on the basis of different criteria both for the non-dissipative and dissipative case. We show that the adopted criteria agree both in the non-dissipative case and in the presence of population damping.

education.field_of_studyQuantum PhysicsBasis (linear algebra)PopulationFOS: Physical sciencesNon-MarkovianityConstruct (python library)Condensed Matter PhysicsAtomic and Molecular Physics and OpticsAction (physics)Settore FIS/03 - Fisica Della MateriaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciQubitOpen quantum systemMaster equationDissipative systemStatistical physicseducationQuantum Physics (quant-ph)Mathematical PhysicsMathematics
researchProduct

Topological Protection and Control of Quantum Markovianity

2020

This article belongs to the Special Issue Topological Photonics.

lcsh:Applied optics. PhotonicsDecoherence dynamicAnderson localizationQuantum-Hall topological insulatorQuantum decoherencePhysics::OpticsFOS: Physical sciences02 engineering and technologyTopology01 natural sciencesQuantum-Hall topological insulators0103 physical sciencesTopological orderRadiology Nuclear Medicine and imagingAnderson localizationGauge theoryQuantum information010306 general physicsInstrumentationQuantumNon-Markovianity in open quantum systemPhysicsQuantum PhysicsCavity quantum electrodynamicslcsh:TA1501-1820Decoherence dynamics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsTopological orderQubitQuantum Physics (quant-ph)0210 nano-technologyNon-Markovianity in open quantum systemsPhotonics
researchProduct

Fundamental bounds on qubit reset

2020

Qubit reset is a basic prerequisite for operating quantum devices, requiring the export of entropy. The fastest and most accurate way to reset a qubit is obtained by coupling the qubit to an ancilla on demand. Here, we derive fundamental bounds on qubit reset in terms of maximum fidelity and minimum time, assuming control over the qubit and no control over the ancilla. Using the Cartan decomposition of the Lie algebra of qubit plus two-level ancilla, we identify the types of interaction and controls for which the qubit can be purified. For these configurations, we show that a time-optimal protocol consists of purity exchange between qubit and ancilla brought into resonance, where the maximu…

media_common.quotation_subjectFOS: Physical sciencesQuantum controlFidelityTopology53001 natural sciences010305 fluids & plasmassymbols.namesakeComputer Science::Emerging TechnologiesDimension (vector space)0103 physical sciencesQuantum information architectures & platformsQuantum information010306 general physicsQuantum information architectures & platformsmedia_commonPhysicsQuantum Physics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikHilbert spaceQuantum controlQuantum PhysicsQubitsymbolsQuantum InformationQuantum Physics (quant-ph)Reset (computing)
researchProduct