Search results for "R-kieli"
showing 8 items of 8 documents
Dimension reduction for time series in a blind source separation context using r
2021
Funding Information: The work of KN was supported by the CRoNoS COST Action IC1408 and the Austrian Science Fund P31881-N32. The work of ST was supported by the CRoNoS COST Action IC1408. The work of JV was supported by Academy of Finland (grant 321883). We would like to thank the anonymous reviewers for their comments which improved the paper and package considerably. Publisher Copyright: © 2021, American Statistical Association. All rights reserved. Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first red…
fICA : FastICA Algorithms and Their Improved Variants
2019
Abstract In independent component analysis (ICA) one searches for mutually independent non gaussian latent variables when the components of the multivariate data are assumed to be linear combinations of them. Arguably, the most popular method to perform ICA is FastICA. There are two classical versions, the deflation-based FastICA where the components are found one by one, and the symmetric FastICA where the components are found simultaneously. These methods have been implemented previously in two R packages, fastICA and ica. We present the R package fICA and compare it to the other packages. Additional features in fICA include optimization of the extraction order in the deflation-based vers…
Prediction and interpolation of time series by state space models
2015
Artikkeliväitöskirja. Sisältää yhteenveto-osan ja neljä artikkelia. Article dissertation. Contains an introduction part and four articles. A large amount of data collected today is in the form of a time series. In order to make realistic inferences based on time series forecasts, in addition to point predictions, prediction intervals or other measures of uncertainty should be presented. Multiple sources of uncertainty are often ignored due to the complexities involved in accounting them correctly. In this dissertation, some of these problems are reviewed and some new solutions are presented. A state space approach is also advocated for an e cient and exible framework for time series forecas…
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
2020
The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as changes in tax policy which gradually increases their effect over time. The Markov chain Monte Carlo algorithms powering the Bayesian inference are based on Hamiltonian Monte Carlo provided by Stan software, using a state space representation of the model to marginalise over the regression coefficients for efficient low-dimensional sampling.
Causal Effect Identification from Multiple Incomplete Data Sources: A General Search-Based Approach
2021
Causal effect identification considers whether an interventional probability distribution can be uniquely determined without parametric assumptions from measured source distributions and structural knowledge on the generating system. While complete graphical criteria and procedures exist for many identification problems, there are still challenging but important extensions that have not been considered in the literature. To tackle these new settings, we present a search algorithm directly over the rules of do-calculus. Due to generality of do-calculus, the search is capable of taking more advanced data-generating mechanisms into account along with an arbitrary type of both observational and…
Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R
2019
Sequence analysis is being more and more widely used for the analysis of social sequences and other multivariate categorical time series data. However, it is often complex to describe, visualize, and compare large sequence data, especially when there are multiple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to detect underlying latent structures and they can be used in various longitudinal settings: to account for measurement error, to detect unobservable states, or to compress information across several types of observations. Extending to mixture hidden Markov models (MHMMs) allows clustering data into homogeneous subsets, with or without external covariate…
Improving identification algorithms in causal inference
2018
Causal models provide a formal approach to the study of causality. One of the most useful features of causal modeling is that it enables one to make causal claims about a phenomenon using observational data alone under suitable conditions. This feature enables the analysis of interventions that may be infeasible to conduct in the real world for practical or ethical reasons. The uncertainty associated with the variables of interest is taken into account by including a probability distribution in the causal model, making it is possible to study the effects of external interventions by examining how this distribution is changed by the action. The probability distribution of a specific variable i…
KernelICA : Kernel Independent Component Analysis
2021
The kernel independent component analysis (kernel ICA) method introduced by Bach and Jordan (2003) . The incomplete Cholesky decomposition used in kernel ICA is provided as separate function. nonPeerReviewed