Search results for "RAC1"

showing 10 items of 36 documents

Inhibition of Rac1 GTPase Decreases Vascular Oxidative Stress, Improves Endothelial Function, and Attenuates Atherosclerosis Development in Mice

2021

Aims: Oxidative stress and inflammation contribute to atherogenesis. Rac1 GTPase regulates pro-oxidant NADPH oxidase activity, reactive oxygen species (ROS) formation, actin cytoskeleton organization and monocyte adhesion. We investigated the vascular effects of pharmacological inhibition of Rac1 GTPase in mice.Methods and Results: We treated wild-type and apolipoprotein E-deficient (ApoE−/−) mice with Clostridium sordellii lethal toxin (LT), a Rac1 inhibitor, and assessed vascular oxidative stress, expression and activity of involved proteins, endothelial function, macrophage infiltration, and atherosclerosis development. LT-treated wild-type mice displayed decreased vascular NADPH oxidase…

RHOAInflammationVascular permeabilityfree radicalsPharmacologyCardiovascular Medicinemedicine.disease_causeActin cytoskeleton organizationendothelial functionmedicineoxidative stressDiseases of the circulatory (Cardiovascular) systemddc:610Endothelial dysfunctionOriginal Researchchemistry.chemical_classificationReactive oxygen speciesNADPH oxidaseGTPasesbiologymedicine.diseasechemistryatherosclerosis endothelial function oxidative stress free radicals Rac1 GTPasesRC666-701biology.proteinmedicine.symptomatherosclerosisCardiology and Cardiovascular MedicineOxidative stressRac1Frontiers in Cardiovascular Medicine
researchProduct

Clostridium difficile toxin A induces expression of the stress-induced early gene product RhoB.

2004

Clostridium difficile toxin A monoglucosylates the Rho family GTPases Rho, Rac, and Cdc42. Glucosylation leads to the functional inactivation of Rho GTPases and causes disruption of the actin cytoskeleton. A cDNA microarray revealed the immediate early gene rhoB as the gene that was predominantly up-regulated in colonic CaCo-2 cells after treatment with toxin A. This toxin A effect was also detectable in epithelial cells such as HT29 and Madin-Darby canine kidney cells, as well as NIH 3T3 fibroblasts. The expression of RhoB was time-dependent and correlated with the morphological changes of cells. The up-regulation of RhoB was approximately 15-fold and was based on the de novo synthesis of …

RHOAPyridinesRHOBBacterial ToxinsClostridium difficile toxin ARAC1GTPaseBiochemistryp38 Mitogen-Activated Protein KinasesGene Expression Regulation EnzymologicGene productEnterotoxinsStress PhysiologicalRhoB GTP-Binding ProteinHumansrhoB GTP-Binding ProteinMolecular BiologyOligonucleotide Array Sequence AnalysisbiologyImidazolesCell BiologyRhoBClostridium difficileActin cytoskeletonMolecular biologyUp-Regulationbiology.proteinGene expressionCaco-2 CellsThe Journal of biological chemistry
researchProduct

PARD3 Inactivation in Lung Squamous Cell Carcinomas Impairs STAT3 and Promotes Malignant Invasion.

2015

Abstract Correct apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy. Most PAR3-mutant proteins exhibited a relative reduction in the ability to mediate formation of tight junctions and actin-based protrusions, bind atypical protein kinase C, activate RAC1, and activate STAT3 at cell confluence. Thus, PARD3 alterations prevented the formation of c…

STAT3 Transcription Factorrac1 GTP-Binding ProteinCancer ResearchLung NeoplasmsCellMice NudeRAC1Cell Cycle ProteinsBiologyArticleCell MovementCell Line TumorCell polaritymedicineAnimalsHumansNeoplasm InvasivenessProtein Kinase CAdaptor Proteins Signal TransducingCell ProliferationConfluencyTight junctionBase SequenceCell growthLiver NeoplasmsMembrane ProteinsSequence Analysis DNACell biologymedicine.anatomical_structureOncologyCell cultureMutationCancer researchCarcinoma Squamous CellTranscriptomeIntracellularNeoplasm TransplantationCancer research
researchProduct

Novel Signal Transduction Pathways: Analysis of STAT-3 and Rac-1 Signaling in Inflammatory Bowel Disease

2006

Although the precise etiology of inflammatory bowel disease still remains unclear, considerable progress has been made in the identification of novel signal transduction pathways that elucidate the immunopathogenesis involved in the perpetuation of the inflammatory process. Augmented T cell resistance against apoptosis is regarded as a pivotal factor in the pathogenesis, as it impairs mucosal homeostasis and leads to unrestrained accumulation of activated T cells, which subsequently lead to the amplification of the inflammatory response. Therefore novel therapeutic strategies aim at restoring mucosal T cell susceptibility to apoptosis through targeting of signal transduction pathways that a…

STAT3 Transcription Factorrac1 GTP-Binding ProteinT-LymphocytesT cellApoptosisTherapeutic ProcedureAzathioprineBiologyInflammatory bowel diseaseGeneral Biochemistry Genetics and Molecular BiologystatPathogenesisHistory and Philosophy of ScienceAzathioprinemedicineHumansGeneral NeuroscienceInflammatory Bowel Diseasesmedicine.diseasemedicine.anatomical_structureApoptosisImmunologySignal transductionImmunosuppressive AgentsSignal Transductionmedicine.drugAnnals of the New York Academy of Sciences
researchProduct

Impact of amino acids 22-27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864

1999

Here we report data describing some principles of the interaction between small GTP-binding proteins and large Clostridial cytotoxins (LCTs). Our investigation was based on the differential glucosylation of Rac1 versus RhoA by LCTs TcsL-1522, TcdB-1470 and TcdB-8864. Chimeric RhoA/Rac1 proteins and GTPases mutated at defined regions or single amino acids were used as substrates. Starting with chimeric Rac/Rho proteins we demonstrated that proteins containing the N-terminal 73 amino acids of Rac1 (but not those of RhoA) were efficiently glucosylated. Within this stretch, three regions differ significantly in Rac1 and RhoA. Regions containing amino acids 41-45 and 50-54 had no effect on toxin…

chemistry.chemical_classificationRHOAGlycosylationbiologyRAC1GTPaseBiochemistryAmino acidchemistry.chemical_compoundBiochemistrychemistryCdc42 GTP-Binding Proteinbiology.proteinBinding sitePeptide sequenceEuropean Journal of Biochemistry
researchProduct

Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity

2011

Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. I…

rac1 GTP-Binding ProteinCancer ResearchAnthracyclineDoxorubicin transportCardiac fibrosismedicine.medical_treatmentImmunologyPharmacologyBiologyDNA damage responsestatinsMiceCellular and Molecular NeuroscienceRho GTPasespolycyclic compoundsmedicineAnimalsDNA Breaks Double-StrandedMyocytes CardiacDoxorubicinLovastatinanthracyclinesCardiotoxicityAntibiotics AntineoplasticTroponin IConnective Tissue Growth FactorCell Biologymedicine.diseaseRatsCTGFDNA Topoisomerases Type IICytokinenormal tissue damageDoxorubicinOriginal Articlelipids (amino acids peptides and proteins)LovastatinAtrial Natriuretic FactorSignal Transductionmedicine.drugCell Death & Disease
researchProduct

Activation of NF-kappaB and IL-8 by yersinia enterocolitica invasin protein is conferred by engagement of rac1 and MAP kinase cascades.

2003

International audience; Yersinia enterocolitica triggers activation of the nuclear factor (NF)-kappaB and production of the proinflammatory chemokine interleukin (IL)-8 in intestinal epithelial cells. This activation is due to adhesion of the bacteria via their outer membrane protein invasin to the host cells. Using Clostridium difficile toxins that specifically inactivate small GTPases, and transfection of inhibitory proteins of the Rho-GTPases, we demonstrate that Rac1, but not Cdc42 or Rho, is required for activation of NF-kappaB by invasin. Invasin activated the mitogen activated protein kinases (MAPK) p38 and c-Jun N-terminal protein kinase (JNK) but not extracellular signal regulated …

rac1 GTP-Binding ProteinMAP Kinase Kinase 4MAP Kinase Signaling SystemRNA Stability[SDV]Life Sciences [q-bio]ImmunologyMitogen-activated protein kinase kinasep38 Mitogen-Activated Protein KinasesMicrobiologyBacterial AdhesionMAP2K703 medical and health sciencesBacterial ProteinsVirologyHumansASK1RNA Messengerc-RafAdhesins Bacterialcdc42 GTP-Binding ProteinrhoB GTP-Binding ProteinYersinia enterocolitica030304 developmental biologyMitogen-Activated Protein Kinase Kinases0303 health sciencesbiologyMAP kinase kinase kinase030306 microbiologyInterleukin-8Cyclin-dependent kinase 2JNK Mitogen-Activated Protein KinasesNF-kappa BProtein kinase RMolecular biologyCell biologybiology.proteinCyclin-dependent kinase 9Mitogen-Activated Protein KinasesrhoA GTP-Binding ProteinHeLa CellsSignal Transduction
researchProduct

Rac1-Regulated Endothelial Radiation Response Stimulates Extravasation and Metastasis That Can Be Blocked by HMG-CoA Reductase Inhibitors

2011

Radiotherapy (RT) plays a key role in cancer treatment. Although the benefit of ionizing radiation (IR) is well established, some findings raise the possibility that irradiation of the primary tumor not only triggers a killing response but also increases the metastatic potential of surviving tumor cells. Here we addressed the question of whether irradiation of normal cells outside of the primary tumor augments metastasis by stimulating the extravasation of circulating tumor cells. We show that IR exposure of human endothelial cells (EC), tumor cells (TC) or both increases TC-EC adhesion in vitro. IR-stimulated TC-EC adhesion was blocked by the HMG-CoA reductase inhibitor lovastatin. Glycyrr…

rac1 GTP-Binding ProteinPathologyCancer TreatmentToxicologyPolymerase Chain ReactionMetastasisMetastasisMiceCirculating tumor cellMolecular Cell BiologyBasic Cancer ResearchNeoplasm MetastasisMice Inbred BALB CMultidisciplinarybiologyChemistryQRTotal body irradiationPrimary tumorExtravasationOncologyMedicineElectrophoresis Polyacrylamide GelLovastatinE-SelectinWhole-Body IrradiationResearch Articlemedicine.drugDrugs and Devicesmedicine.medical_specialtyGenetic ToxicologyScienceBlotting WesternRadiation TherapyCardiovascular PharmacologyE-selectinCell AdhesionmedicineAnimalsHumansLovastatinCell adhesionBiologyDNA PrimersBase SequenceGlycyrrhizic Acidmedicine.diseaseCancer researchbiology.proteinHydroxymethylglutaryl-CoA Reductase InhibitorsExtravasation of Diagnostic and Therapeutic MaterialsPLoS ONE
researchProduct

Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 ph…

2006

Aplidin® is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin® alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin® generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin® activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulatio…

rac1 GTP-Binding ProteinProgrammed cell deathSmall interfering RNAGlutathione reductaseDown-RegulationAntineoplastic AgentsApoptosisBreast NeoplasmsCell Cycle ProteinsBiologyPeptides CyclicImmediate-Early ProteinsMembrane Potentialschemistry.chemical_compoundMiceDownregulation and upregulationDepsipeptidesProtein Phosphatase 1Phosphoprotein PhosphatasesAnimalsHomeostasisHumansMolecular Biologychemistry.chemical_classificationReactive oxygen speciesGlutathione PeroxidaseGlutathione DisulfideJNK Mitogen-Activated Protein KinasesProtein phosphatase 1Dual Specificity Phosphatase 1Cell BiologyGlutathioneCell biologyEnzyme ActivationOxidative StressGlutathione ReductasechemistryMitochondrial MembranesGlutathione disulfideCalciumProtein Tyrosine PhosphatasesReactive Oxygen SpeciesCopperHeLa CellsCell Death and Differentiation
researchProduct

Tiam1 as a Signaling Mediator of Nerve Growth Factor-Dependent Neurite Outgrowth

2010

Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras- GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In add…

rac1 GTP-Binding ProteinTiam1; Nerve growth factor (NGF)GTPaseTropomyosin receptor kinase ABiochemistryPC12 CellsCell Biology/Cell Signalingchemistry.chemical_compoundChlorocebus aethiopsNerve Growth FactorTiam1Guanine Nucleotide Exchange FactorsT-Lymphoma Invasion and Metastasis-inducing Protein 1NGFNeuronsMultidisciplinaryUNESCO::CIENCIAS DE LA VIDA::Biología molecularQOtras Medicina BásicaRCell Differentiation//purl.org/becyt/ford/3.1 [https]Cell biologyNeoplasm ProteinsMedicina BásicaNeuronal differentiationNerve growth factor (NGF)COS CellsMedicine//purl.org/becyt/ford/3 [https]Guanine nucleotide exchange factorSignal transductionResearch ArticleSignal TransductionCIENCIAS MÉDICAS Y DE LA SALUDNeuriteScienceCell Biology/Neuronal Signaling MechanismsRAC1Biology:CIENCIAS DE LA VIDA::Biología molecular [UNESCO]Neuroscience/Neuronal Signaling MechanismsNeuritesAnimalsHumansReceptor trkATyrosine phosphorylationMolecular biologyRatsNerve growth factorchemistrynervous systemras ProteinsRac1 GTPasePLoS ONE
researchProduct