Search results for "RADIOACTIVITY"
showing 10 items of 334 documents
Dispersion relation formalism for the two-photon exchange correction to elastic muon-proton scattering: elastic intermediate state
2018
We evaluate the two-photon exchange correction to the unpolarized cross section in the elastic muon-proton scattering within dispersion relations. One of the six independent invariant amplitudes requires a subtraction. We fix the subtraction function to the model estimate of the full two-photon exchange at one of three MUSE beam energies and make a prediction for the two other energies. Additionally, we present single and double polarization observables accounting for the lepton mass.
$\texttt{HEPfit}$: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models
2020
The European physical journal / C Particles and fields C80(5), 456 (2020). doi:10.1140/epjc/s10052-020-7904-z
Cutoff dependence of the thrust peak position in the dipole shower
2020
We analyse the dependence of the peak position of the thrust distribution on the cutoff value in the Nagy-Soper dipole shower. We compare the outcome of the parton shower simulations to a relation of the dependence from an analytic computation, derived within soft-collinear effective theory. We show that the result of the parton shower simulations and the analytic computation are in good agreement.
JUNO sensitivity to low energy atmospheric neutrino spectra
2021
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…
Erratum to: Monopole production via photon fusion and Drell–Yan processes: MadGraph implementation and perturbativity via velocity-dependent coupling…
2019
It has been found that the central and right-hand-side graphs in Fig. 27 were produced with an incorrect run configuration in MadGraph; the correct graphs are presented here
The observation of vibrating pear-shapes in radon nuclei
2019
6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Massless Spectra and Gauge Couplings at One-Loop on Non-Factorisable Toroidal Orientifolds
2018
So-called `non-factorisable' toroidal orbifolds can be rewritten in a factorised form as a product of three two-tori by imposing an additional shift symmetry. This finding of Blaszczyk et al., arXiv:1111.5852, provides a new avenue to Conformal Field Theory methods, by which the vector-like massless matter spectrum - and thereby the type of gauge group enhancement on orientifold invariant fractional D6-branes - and the one-loop corrections to the gauge couplings in Type IIA orientifold theories can be computed in addition to the well-established chiral matter spectrum derived from topological intersection numbers among three-cycles. We demonstrate this framework for the $\mathbb{Z}_4 \times…
Gravity-mediated Scalar Dark Matter in Warped Extra-Dimensions
2020
We revisit the case of scalar dark matter interacting just gravitationally with the Standard Model (SM) particles in an extra-dimensional Randall-Sundrum scenario. We assume that both, the dark matter and the Standard Model, are localized in the TeV brane and only interact via gravitational mediators, namely the graviton Kaluza-Klein modes and the radion. We analyze in detail the dark matter annihilation channel into two on-shell KK-gravitons, and contrary to previous studies which overlooked this process, we find that it is possible to obtain the correct relic abundance for dark matter masses in the range [1, 10] TeV even after taking into account the strong bounds from LHC Run II. We also…
Generalized Ashtekar variables for Palatini f(R) models
2021
We consider special classes of Palatini f(R) theories, featured by additional Loop Quantum Gravity inspired terms, with the aim of identifying a set of modified Ashtekar canonical variables, which still preserve the SU(2) gauge structure of the standard theory. In particular, we allow for affine connection to be endowed with torsion, which turns out to depend on the additional scalar degree affecting Palatini f(R) gravity, and in this respect we successfully construct a novel Gauss constraint. We analyze the role of the additional scalar field, outlining as it acquires a dynamical character by virtue of a non vanishing Immirzi parameter, and we describe some possible effects on the area ope…
Finite Entanglement Entropy in Asymptotically Safe Quantum Gravity
2018
Entanglement entropies calculated in the framework of quantum field theory on classical, flat or curved, spacetimes are known to show an intriguing area law in four dimensions, but they are also notorious for their quadratic ultraviolet divergences. In this paper we demonstrate that the analogous entanglement entropies when computed within the Asymptotic Safety approach to background independent quantum gravity are perfectly free from such divergences. We argue that the divergences are an artifact due to the over-idealization of a rigid, classical spacetime geometry which is insensitive to the quantum dynamics.