Search results for "RADIOACTIVITY"

showing 10 items of 334 documents

High brilliance uranium beams for the GSI FAIR

2017

The 40 years old GSI-UNILAC (Universal Linear Accelerator) as well as the heavy ion synchrotron SIS18 will serve as a high current heavy ion injector for the new FAIR (Facility for Antiproton and Ion Research) synchrotron SIS100. In the context of an advanced machine investigation program in combination with the ongoing UNILAC upgrade program, a new uranium beam intensity record (11.5 emA, ${\mathrm{U}}^{29+}$) at very high beam brilliance was achieved recently in a machine experiment campaign. This is an important step paving the way to fulfill the FAIR heavy ion high intensity beam requirements. Results of high current uranium beam measurements applying a newly developed pulsed hydrogen g…

PhysicsNuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicschemistry.chemical_elementContext (language use)Surfaces and InterfacesUranium01 natural sciencesSynchrotronlaw.inventionNuclear physicsUpgradechemistrylawUniversal linear accelerator0103 physical sciencesPhysics::Accelerator PhysicsFacility for Antiproton and Ion Researchlcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment010306 general physicsIntensity (heat transfer)Beam (structure)Physical Review Accelerators and Beams
researchProduct

Shell structure beyond the proton drip line studied via proton emission from deformed 141Ho

2008

Abstract Fine structure in proton emission from the 7 / 2 − [ 523 ] ground state and from the 1 / 2 + [ 411 ] isomer in deformed nucleus 141Ho was studied by means of fusion-evaporation reactions and digital signal processing. Proton transitions to the first excited 2+ state in 140Dy, with the branching ratio of I p g s ( 2 + ) = 0.9 ± 0.2 % and I p m ( 2 + ) = 1.7 ± 0.5 % , were observed. The data are analyzed within the non-adiabatic weak coupling model assuming a large quadrupole deformation of the daughter nucleus 140Dy as predicted by the self-consistent theory. Implications of this result on coexistence effects around N = 74 are discussed. Significant modifications of the proton shell…

PhysicsNuclear and High Energy PhysicsProtonProton radioactivity; Proton shell structure; Two-body tensor interactionsNuclear TheoryHadronElementary particleExcited stateQuadrupoleProton emissionAtomic physicsNuclear ExperimentNucleonGround statePhysics Letters B
researchProduct

Two-proton emission in the decay of Ar-31

1998

18 pages, 7 figures, 2 tables.-- PACS nrs.: 23.40.Hc; 27.30.+t.

PhysicsNuclear and High Energy PhysicsRadioactivity Ar-31(beta(+)p) [from Ca(p3pxn) reaction]Be-6Delayed 2-proton emissionNuclear TheoryOn-line mass separationAl-22Measured beta-delayed E-p pp-coinCaO target3-particle decaysNucleiNuclear physicsSystematicsIsobaric processSurface barrier Si detectorsAtomic physicsProton emissionNuclear ExperimentGround stateSpin (physics)Ar-31 deduced beta 2p-decay channels
researchProduct

On the effect of excited states in lattice calculations of the nucleon axial charge

2017

Excited-state contamination is one of the dominant uncertainties in lattice calculations of the nucleon axial-charge, $g_A$. Recently published results in leading-order chiral perturbation theory (ChPT) predict the excited-state contamination to be independent of the nucleon interpolator and positive. However, empirical results from numerical lattice calculations show negative contamination (downward curvature), indicating that present-day calculations are not in the regime where the leading-order ChPT predictions apply. In this paper we show that, under plausible assumptions, one can reproduce the behavior of lattice correlators by taking into account final-state $N \pi$ interactions, in p…

PhysicsNuclear and High Energy PhysicsRoper resonanceChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryFOS: Physical sciencesLattice QCD01 natural sciencesAmplitudeHigh Energy Physics - LatticeLattice (order)Excited stateQuantum mechanicsQuantum electrodynamics0103 physical scienceslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNucleonLattice model (physics)
researchProduct

Neutrino mixing and CP-violation

2000

The prospects of measuring the leptonic angles and CP-odd phases at a neutrino factory are discussed in two scenarios: 1) three active neutrinos as indicated by the present ensemble of atmospheric plus solar data; 2) three active plus one sterile neutrino when the LSND signal is also taken into account. For the latter we develop one and two mass dominance approximations. The appearance of wrong sign muons in long baseline experiments and tau leptons in short baseline ones provides the best tests of CP-violation in scenarios 1) and 2), respectively.

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physicsMuonHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)lcsh:QC770-798CP violationlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrino FactoryHigh Energy Physics::ExperimentNeutrinoMixing (physics)LeptonSign (mathematics)Particle Physics - Phenomenology
researchProduct

Longitudinal phase space reconstruction for a heavy ion accelerator

2020

At the GSI Helmholtzzentrum f\"ur Schwerionenforschung (GSI) in Darmstadt, Germany, a prototype cryomodule (advanced demonstrator) for the superconducting (SC) continuous wave (CW) Helmholtz Linear Accelerator (HELIAC) is under construction. A transport line, comprising quadrupole lenses, rebuncher cavities, beam correctors, and adequate beam instrumentation has been built to deliver the beam from the GSI 1.4 MeV/u High Charge Injector (HLI) to the advanced demonstrator, which offers a test environment for SC CW multigap cavities. In order to achieve proper phase space matching, the beam from the HLI must be characterized in detail. In a dedicated machine experiment the bunch shape has been…

PhysicsNuclear and High Energy PhysicsTomographic reconstructionPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsbusiness.industrySurfaces and InterfacesTracking (particle physics)01 natural sciencesLinear particle acceleratorOpticsPhase spaceCryomodule0103 physical sciencesQuadrupoleContinuous wavePhysics::Accelerator Physicslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsbusinessBeam (structure)Physical Review Accelerators and Beams
researchProduct

Non-standard neutrino oscillations: perspective from unitarity triangles

2021

We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression (even in presence of new physics scenario as long as the mixing matrix is unitary) facilitates a neat geometric view of neutrino oscillations in terms of LUT. We examine the regime of validity of perturbative expansions in the NSI case and make comparisons with approximate expressions existing in liter…

PhysicsNuclear and High Energy PhysicsUnitarity010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyDegrees of freedom (physics and chemistry)FOS: Physical sciencesQC770-798Invariant (physics)01 natural sciencesHigh Energy Physics - PhenomenologyTheoretical physicsMatrix (mathematics)CP violationHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityBeyond Standard Model0103 physical sciencesNeutrino PhysicsPerturbation theory (quantum mechanics)Neutrino010306 general physicsNeutrino oscillationJournal of High Energy Physics
researchProduct

Properties of the 12C 10 MeV state determined through β-decay

2005

16 pages, 1 table, 10 figures.-- PACS nrs.: 23.40.-s; 26.20.+f; 27.20.+n.-- Printed version published Oct 3, 2005.

PhysicsNuclear and High Energy Physics[PACS] β decayDeduced spin and parity of levels in C-12[PACS] β decay; double β decay; electron and muon captureParity (physics)Alpha particleRadioactivity Be-12(β-) B-12(β(-)3α) [produced in Ta(p X)]Inelastic scatteringBeta decayelectron and muon captureParticle decayMeasured α-particle coincidencesR-matrix analysisdouble β decay6 ≤ A ≤ 19 [[PACS] Properties of specific nuclei listed by mass ranges]Double-sided Si strip detectorDouble beta decay[PACS] Properties of specific nuclei listed by mass ranges: 6 ≤ A ≤ 19Atomic physics[PACS] Hydrostatic stellar nucleosynthesisExcitationCoincidence detection in neurobiologyNuclear Physics A
researchProduct

Spectroscopy at the two-proton drip line: Excited states in 158W

2017

Abstract Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b 2 p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.

PhysicsNuclear and High Energy Physicsproton radioactivityProtonta114010308 nuclear & particles physicsYrastNuclear Theory01 natural scienceslcsh:QC1-999Excited state0103 physical sciencesNuclideAtomic physics010306 general physicsSpectroscopyGround stateNuclear Experimentmultiparticle excited stateslcsh:PhysicsExcitationLine (formation)Physics Letters B
researchProduct

Preaccelerator concepts for an energy-recovering superconducting accelerator

2021

In this paper we compare two concepts of a preaccelerator for the energy-recovery linac MESA: a hybrid injector that combines normal conducting and superconducting technology and a fully normal conducting injector. The particle source delivers polarized electrons at 100 keV. Thus the first accelerating section has to be of a graded-β kind. The graded-β section is designed with a final energy exceeding 1 MeV so TESLA-type nine-cell resonators can be used as superconducting cavities. The final energy of the preaccelerator shall be 5 MeV to avoid neutron production in the beam dump of the energy-recovery linac.

PhysicsNuclear physicsNuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Physics::Accelerator Physicslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivitySurfaces and InterfacesSuperconducting acceleratorEnergy (signal processing)Physical Review Accelerators and Beams
researchProduct