Search results for "RADIOACTIVITY"

showing 10 items of 334 documents

Observable flavor violation from spontaneous lepton number breaking

2022

We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as $\mu \to e \, J$, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous $(g-2)_{\mu}$ in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon $g-2$ anomaly would lead to tension with recent astrophysical bou…

Global SymmetriesHigh Energy Physics - PhenomenologyNuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityComputer Science::Information RetrievalBeyond Standard ModelHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesNeutrino PhysicsHigh Energy Physics::ExperimentQC770-798Journal of High Energy Physics
researchProduct

The Inverse Seesaw Family: Dirac And Majorana

2021

After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking "$\mu$-terms". These models can be tested both in colliders and with the observation of lepton flavour violating processes.

Global SymmetriesPhysicsNuclear and High Energy PhysicsClass (set theory)010308 nuclear & particles physicsDirac (video compression format)High Energy Physics::PhenomenologyFOS: Physical sciencesInverse01 natural sciencesMAJORANATheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryBeyond Standard Model0103 physical scienceslcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityHigh Energy Physics::ExperimentSymmetry breakingNeutrino010306 general physicsLepton
researchProduct

Stimulated transitions in resonant atom Majorana mixing

2018

Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual $\Delta L = 2$ mixing between a parent $^AZ$ atom and a daughter $^A(Z-2)$ excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino cha…

Global SymmetriesPhysicsNuclear and High Energy Physicseducation.field_of_study010308 nuclear & particles physicsElectron capturePopulationFOS: Physical sciences01 natural sciencesHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Double beta decayExcited stateBeyond Standard Model0103 physical sciencesAtomlcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrinoAtomic physics010306 general physicseducationGround stateJournal of High Energy Physics
researchProduct

Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics

2018

We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into General Relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this corresponden…

Gravity (chemistry)Physics and Astronomy (miscellaneous)Algebraic structureGeneral relativityFOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Metric-affine approachPhysics010308 nuclear & particles physicsNumerical analysisNonlinear theoryPower (physics)Nonlinear gravity theoriesNonlinear systemQuantum electrodynamicslcsh:QC770-798Regular Article - Theoretical Physics
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|<0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Contribution of exclusive diffractive processes to the measured azimuthal asymmetries in SIDIS

2019

Hadron leptoproduction in Semi-Inclusive measurements of Deep-Inelastic Scattering (SIDIS) on unpolarised nucleons allows one to get information on the intrinsic transverse momentum of quarks in a nucleon and on the Boer-Mulders function through the measurement of azimuthal modulations in the cross section. These modulations were recently measured by the HERMES experiment at DESY on proton and deuteron targets, and by the COMPASS experiment using the CERN SPS muon beam and a $^6$LiD target. In both cases, the amplitudes of the $\cos\phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependences for both positive and negative hadrons. It has been known since some time that the measu…

HERMES experimentvirtual [photon]Hadronleptoproduction [hadron]measurement methodsNuclear TheoryVirtual particleHERMES01 natural sciencesSIDISCOMPASShadron: leptoproductionHigh Energy Physics - Experimentazimthal asymmetrieproduction [diffraction]High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)semi-inclusive reaction [deep inelastic scattering][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]COMPASS experimentNuclear ExperimentPhysicsdeep inelastic scattering: semi-inclusive reactionnucleonhep-phphoton: energyTMD obsvervableangular dependenceHigh Energy Physics - Phenomenologymodulationhadron: final stateTMD obsvervablesbeam [muon]asymmetry [angular distribution]interpretation of experimentsdeuteron: targettransverse momentum [quark]Nucleondiffraction: productionParticle Physics - ExperimentQuarkNuclear and High Energy PhysicsParticle physicsazimthal asymmetriesexclusive reactionangular distribution: asymmetryMesonFOS: Physical sciences530vector meson: production0103 physical scienceskinematics: effectlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530final state [hadron]010306 general physicsParticle Physics - PhenomenologyMuonmuon: beam010308 nuclear & particles physicsproduction [vector meson]hep-exenergy [photon]CERN SPSeffect [kinematics]lcsh:QC770-798quark: transverse momentumHigh Energy Physics::ExperimentTMD obsvervables; azimthal asymmetries; SIDIStarget [deuteron]photon: virtual
researchProduct

Non-quadratic improved Hessian PDF reweighting and application to CMS dijet measurements at 5.02 TeV

2019

Hessian PDF reweighting, or "profiling", has become a widely used way to study the impact of a new data set on parton distribution functions (PDFs) with Hessian error sets. The available implementations of this method have resorted to a perfectly quadratic approximation of the initial $\chi^2$ function before inclusion of the new data. We demonstrate how one can take into account the first non-quadratic components of the original fit in the reweighting, provided that the necessary information is available. We then apply this method to the CMS measurement of dijet pseudorapidity spectra in proton-proton (pp) and proton-lead (pPb) collisions at 5.02 TeV. The measured pp dijet spectra disagree…

Hessian matrixHessian matrixParticle physicsPhysics and Astronomy (miscellaneous)parton distribution functionsNuclear TheoryFOS: Physical scienceslcsh:AstrophysicsPartonApproxhiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)symbols.namesakeQuadratic equationHigh Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentEngineering (miscellaneous)Physicsproton–proton collisions010308 nuclear & particles physicsFunction (mathematics)GluonHigh Energy Physics - PhenomenologyDistribution functionproton-heavy ion collisionsPARTON DISTRIBUTIONSPseudorapiditysymbolslcsh:QC770-798High Energy Physics::Experimentydinfysiikka
researchProduct

Can we fit nuclear PDFs with the high-x CLAS data?

2020

AbstractNuclear parton distribution functions (nuclear PDFs) are non-perturbative objects that encode the partonic behaviour of bound nucleons. To avoid potential higher-twist contributions, the data probing the high-x end of nuclear PDFs are sometimes left out from the global extractions despite their potential to constrain the fit parameters. In the present work we focus on the kinematic corner covered by the new high-x data measured by the CLAS/JLab collaboration. By using the Hessian re-weighting technique, we are able to quantitatively test the compatibility of these data with globally analyzed nuclear PDFs and explore the expected impact on the valence-quark distributions at high x. W…

Hessian matrixParticle physicsPhysics and Astronomy (miscellaneous)EMC effectNuclear TheoryFOS: Physical sciencesPartonlcsh:Astrophysicshiukkasfysiikka01 natural sciences114 Physical sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentEngineering (miscellaneous)Physics010308 nuclear & particles physicsddc:530530 Physiknuclear parton distribution functions (nuclear PDFs)High Energy Physics - PhenomenologyDistribution functionsymbolslcsh:QC770-798Nucleonydinfysiikka
researchProduct

Looking at the axionic dark sector with ANITA

2020

The ANITA experiment has recently observed two anomalous events emerging from well below the horizon. Even though they are consistent with tau cascades, a high energy Standard Model or Beyond the Standard Model explanation is challenging and in tension with other experiments. We study under which conditions the reflection of generic radio pulses can reproduce these signals. We propose that these pulses can be resonantly produced in the ionosphere via axion-photon conversion. This naturally explains the direction and polarization of the events and avoids other experimental bounds.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsPhysics beyond the Standard ModelFOS: Physical scienceslcsh:AstrophysicsPolarization (waves)01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicslcsh:QB460-4660103 physical scienceslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityIonosphereAstrophysics - High Energy Astrophysical Phenomena010306 general physicsEngineering (miscellaneous)Astronomia ObservacionsThe European Physical Journal C
researchProduct

f(R) constant-roll inflation

2017

The previously introduced class of two-parametric phenomenological inflationary models in General Relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of $f(R)$ gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function $f(R)$ (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determin…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)General relativityScalar (mathematics)FOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. RadioactivityEinstein010306 general physicsParametric equationEngineering (miscellaneous)Mathematical physicsPhysicsInflation (cosmology)010308 nuclear & particles physicsFunction (mathematics)High Energy Physics - Theory (hep-th)Metric (mathematics)symbolslcsh:QC770-798Constant (mathematics)Astrophysics - Cosmology and Nongalactic AstrophysicsEuropean Physical Journal C: Particles and Fields
researchProduct