Search results for "RED-HE"
showing 4 items of 4 documents
Circular approach for the valorisation of industrial waste heat and industrial effluents
2021
Regeneration units for thermolytic salts applications in water & power production: State of the art, experimental and modelling assessment
2021
Abstract Thermolytic solutions are often proposed as high salinity or “draw” stream to generate a chemical potential driving force in Salinity Gradient Power (SGP) and Forward Osmosis (FO) technologies. Depleted “draw” solutions exiting the process can be regenerated by a thermal process powered at very-low grade heat, which is able to decompose the salt into gaseous ammonia and carbon dioxide, which can be stripped and then reabsorbed in the draw solution, restoring its initial concentration. In this work, two different experimental prototypes for the regeneration of ammonium bicarbonate aqueous solution were designed, built and tested. The effect of several operating parameters on the reg…
Performance Analysis of a RED-MED Salinity Gradient Heat Engine
2018
A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall syste…
Exergy Analysis of Reverse Electrodialysis Heat Engine with Multi-Effect Distillation Regeneration Stage
2018
The increasing worldwide energy demand is rising the interest on alternative power production technologies based on renewable and emission-free energy sources. In this regard, the closed-loop reverse electrodialysis heat engine (RED-HE) is one of the most promising technologies currently under investigation. This technology produces electric power by harvesting the salinity gradient energy released from the controlled mixing of two artificial salt solutions with different concentrations. Low-grade heat (T < 100 °C), derived from any industrial process is used in a multi-effect distillation (MED) unit to restore the initial salinity gradient of the solutions. In this work, a comprehensive…