Search results for "RED-HE"

showing 4 items of 4 documents

Circular approach for the valorisation of industrial waste heat and industrial effluents

2021

Magnesium hydroxidecircular approachSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciRED-HEcritical raw materialHCO3NH4waste brinereuse
researchProduct

Regeneration units for thermolytic salts applications in water & power production: State of the art, experimental and modelling assessment

2021

Abstract Thermolytic solutions are often proposed as high salinity or “draw” stream to generate a chemical potential driving force in Salinity Gradient Power (SGP) and Forward Osmosis (FO) technologies. Depleted “draw” solutions exiting the process can be regenerated by a thermal process powered at very-low grade heat, which is able to decompose the salt into gaseous ammonia and carbon dioxide, which can be stripped and then reabsorbed in the draw solution, restoring its initial concentration. In this work, two different experimental prototypes for the regeneration of ammonium bicarbonate aqueous solution were designed, built and tested. The effect of several operating parameters on the reg…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciGeneral Chemical EngineeringForward osmosis02 engineering and technologychemistry.chemical_compound020401 chemical engineeringOsmotic powerGeneral Materials Science0204 chemical engineeringProcess simulationProcess engineeringWater Science and TechnologyHeat enginebusiness.industryMechanical EngineeringHCO3NH4 Osmotic heat engine Heat-to-power RED-HE OHE.General Chemistry021001 nanoscience & nanotechnologyAmmonium bicarbonatechemistryScientific methodExergy efficiencyEnvironmental science0210 nano-technologybusiness
researchProduct

Performance Analysis of a RED-MED Salinity Gradient Heat Engine

2018

A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall syste…

ExergyThermal efficiencyMaterials scienceControl and Optimization020209 energyThermodynamicsEnergy Engineering and Power Technologysalinity gradient energy; exergy; artificial solutions; modeling; heat engine; RED-HE02 engineering and technology7. Clean energylcsh:TechnologyRED-HEartificial solutionsWaste heatReversed electrodialysis0202 electrical engineering electronic engineering information engineeringExergyElectrical and Electronic EngineeringEngineering (miscellaneous)Heat engineSalinity gradient energylcsh:TRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiencyArtificial solutionModeling6. Clean waterMembraneExergy efficiencyHeat engineEnergy (miscellaneous)Energies; Volume 11; Issue 12; Pages: 3385
researchProduct

Exergy Analysis of Reverse Electrodialysis Heat Engine with Multi-Effect Distillation Regeneration Stage

2018

The increasing worldwide energy demand is rising the interest on alternative power production technologies based on renewable and emission-free energy sources. In this regard, the closed-loop reverse electrodialysis heat engine (RED-HE) is one of the most promising technologies currently under investigation. This technology produces electric power by harvesting the salinity gradient energy released from the controlled mixing of two artificial salt solutions with different concentrations. Low-grade heat (T < 100 °C), derived from any industrial process is used in a multi-effect distillation (MED) unit to restore the initial salinity gradient of the solutions. In this work, a comprehensive…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/10 - Fisica Tecnica IndustrialeSalinity Gradient Power (SGP) Reverse Electrodialysis (RED) Exergy Analysis Chemical Exergy Reverse Electrodialysis Heat Engine (RED-HE) Exergy efficiency
researchProduct