Search results for "REGULARIZATION"
showing 10 items of 189 documents
Running gravitational couplings, decoupling, and curved spacetime renormalization
2020
We propose to slightly generalize the DeWitt-Schwinger adiabatic renormalization subtractions in curved space to include an arbitrary renormalization mass scale $\mu$. The new predicted running for the gravitational couplings are fully consistent with decoupling of heavy massive fields. This is a somewhat improvement with respect to the more standard treatment of minimal (DeWitt-Schwinger) subtractions via dimensional regularization. We also show how the vacuum metamorphosis model emerges from the running couplings.
En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions
2014
The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the…
Baryon chiral perturbation theory
2009
We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order ${\cal O}(q^6)$ and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.
Inflation, renormalization, and CMB anisotropies
2010
5 páginas.-- Trabajo presentado al Spanish Relativity Meeting (ERE 2009).-- El PDF es la versión pre-print (arXiv:1002.3914v1).
All Master Integrals for Three-Jet Production at Next-to-Next-to-Leading Order
2019
We evaluate analytically all previously unknown nonplanar master integrals for massless five-particle scattering at two loops, using the differential equations method. A canonical form of the differential equations is obtained by identifying integrals with constant leading singularities, in D space-time dimensions. These integrals evaluate to Q-linear combinations of multiple polylogarithms of uniform weight at each order in the expansion in the dimensional regularization parameter and are in agreement with previous conjectures for nonplanar pentagon functions. Our results provide the complete set of two-loop Feynman integrals for any massless 2→3 scattering process, thereby opening up a ne…
Nonlocality and fluctuations near the optical analog of a sonic horizon
2013
We consider the behavior of fluctuations near the sonic horizon and the role of the nonlocality of interaction (nonlinearity) on their regularization. The nonlocality dominates if its characteristic length scale is larger than the regularization length. The influence of nonlocality may be important in the current experiments on the transonic flow in Kerr nonlinear media. Experimental conditions, under which the observation of straddled fluctuations can be observed, are discussed.
Improving the ultraviolet behavior in baryon chiral perturbation theory
2004
We introduce a new formulation of baryon chiral perturbation theory which improves the ultraviolet behavior of propagators and can be interpreted as a smooth cutoff regularization scheme. It is equivalent to the standard approach, preserves all symmetries and therefore satisfies the Ward identities. Our formulation is equally well defined in the vacuum, one- and few-nucleon sectors of the theory. The equations (Bethe-Salpeter, Lippmann-Schwinger, etc.) for the scattering amplitudes of the few-nucleon sector are free of divergences in the new approach. Unlike the usual cutoff regularization, our 'cutoffs' are parameters of the Lagrangian and do not have to be removed.
Recent developments in effective field theory
2007
We will give a short introduction to the one-nucleon sector of chiral perturbation theory and will address the issue of a consistent power counting and renormalization. We will discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q^6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors.
Infrared regularization of baryon chiral perturbation theory reformulated
2003
We formulate the infrared regularization of Becher and Leutwyler in a form analogous to our recently proposed extended on-mass-shell renormalization. In our formulation, IR regularization can be applied straightforwardly to multi-loop diagrams with an arbitrary number of particles with arbitrary masses.
On the (ΔΔ)-component of the deuteron
1974
Abstract The (ΔΔ)-component of the deuteron is investigated using π- and ϱ-exchange for the (NN → ΔΔ)-transition interaction. The depedence of the strength of the (ΔΔ)-component on thetype of regularization, the cut-off parameter and the normal deuteron wave functions is discussed. Inclusion of the ϱ-exchange leads to a weaker dependence on the cut-off parameter and to a smaller (ΔΔ)-admixture probability of 0.7 to 1.2 percent depending on the normal deuteron wave function for a cut-off parameter Λ = 5 fm−1.