Search results for "REGULARIZATION"

showing 10 items of 189 documents

An entropy-based machine learning algorithm for combining macroeconomic forecasts

2019

This paper applies a Machine Learning approach with the aim of providing a single aggregated prediction from a set of individual predictions. Departing from the well-known maximum-entropy inference methodology, a new factor capturing the distance between the true and the estimated aggregated predictions presents a new problem. Algorithms such as ridge, lasso or elastic net help in finding a new methodology to tackle this issue. We carry out a simulation study to evaluate the performance of such a procedure and apply it in order to forecast and measure predictive ability using a dataset of predictions on Spanish gross domestic product.

Elastic net regularizationKullback–Leibler divergenceComputer scienceGeneral Physics and AstronomyInferencelcsh:Astrophysics02 engineering and technologyMachine learningcomputer.software_genremaximum-entropy inferenceArticleGDPGross domestic productlcsh:QB460-4660502 economics and business0202 electrical engineering electronic engineering information engineeringEntropy (information theory)lcsh:Science050205 econometrics combining predictionsaveragingMacroeconomiabusiness.industry05 social scienceslcsh:QC1-999Economia matemàticaTecnologiaKullback–Leiblerlcsh:Q020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerAlgorithmlcsh:Physics
researchProduct

A machine learning application to predict early lung involvement in scleroderma: A feasibility evaluation

2021

Introduction: Systemic sclerosis (SSc) is a systemic immune-mediated disease, featuring fibrosis of the skin and organs, and has the greatest mortality among rheumatic diseases. The nervous system involvement has recently been demonstrated, although actual lung involvement is considered the leading cause of death in SSc and, therefore, should be diagnosed early. Pulmonary function tests are not sensitive enough to be used for screening purposes, thus they should be flanked by other clinical examinations

Elastic net regularizationSpirometryMedicine (General)High-resolution computed tomographyArtificial intelligenceClinical BiochemistryDiseaseMachine learningcomputer.software_genreArticlePulmonary function testingR5-920Machine learningmedicineCause of deathEsophageal dilatationintegumentary systemmedicine.diagnostic_testbusiness.industryHRCT chestRegressionRandom forestArtificial intelligence; Esophageal dilatation; HRCT chest; Machine learning; Systemic sclerosisSystemic sclerosisArtificial intelligencebusinesscomputer
researchProduct

The renormalized electron mass in non-relativistic quantum electrodynamics

2007

This work addresses the problem of infrared mass renormalization for a scalar electron in a translation-invariant model of non-relativistic QED. We assume that the interaction of the electron with the quantized electromagnetic field comprises a fixed ultraviolet regularization and an infrared regularization parametrized by $\sigma>0$. For the value $p=0$ of the conserved total momentum of electron and photon field, bounds on the renormalized mass are established which are uniform in $\sigma\to0$, and the existence of a ground state is proved. For $|p|>0$ sufficiently small, bounds on the renormalized mass are derived for any fixed $\sigma>0$. A key ingredient of our proofs is the operator-t…

Electromagnetic fieldQuantum electrodynamics010102 general mathematicsFOS: Physical sciencesElectronMathematical Physics (math-ph)Spectral analysisRenormalization group01 natural sciences81T16Mass renormalization3. Good healthRenormalizationIsospectralRegularization (physics)Quantum mechanics0103 physical sciencesFunctional renormalization group010307 mathematical physics0101 mathematicsGround stateRenormalization group methodsAnalysisMathematical PhysicsMathematicsJournal of Functional Analysis
researchProduct

An equilibrium point regularization for the Chen system

2006

This paper addresses the control of the chaotic Chen system via a feedback technique. We first present a nonlinear feedback controller which drives the trajectories of the Chen system to a given point for any initial conditions. Then, we design a linear feedback controller which still assures the global stability of the Chen system. We moreover achieve the tracking of a reference signal. Numerical simulations are provided to show the effectiveness of the developed controllers.

Equilibrium pointChenbiologyMathematical analysisfeedback control trackingbiology.organism_classificationRegularization (mathematics)Mathematics
researchProduct

Scad-elastic net and the estimation of individual tourism expenditure determinants

2014

This paper introduces the use of scad-elastic net in the assessment of the determinants of individual tourist spending. This technique approaches two main estimation-related issues of primary importance. So far studies of tourism literature have made a wide use of classic regressions, whose results might be affected by multicollinearity. In addition, because of the absence of robust economic theory on tourism behavior, regressor selection is often left to researcher's choice when not driven by non-optimal automatic criteria. Scad-elastic net is an OLS model that accounts for both these problems by including two types of parameters constraints, namely the smoothly clipped absolute deviation …

EstimationElastic net regularizationInformation Systems and ManagementVariable selectionPenalized regressionbusiness.industryManagement Information SystemsCollinearityArts and Humanities (miscellaneous)MulticollinearityDevelopmental and Educational PsychologyEconometricsPer capitaEconomicsUruguayScad-elastic netTourism expenditureSettore SECS-S/01 - StatisticabusinessScadAccommodationPsychographicTourismInformation SystemsDecision Support Systems
researchProduct

P2D: a self-supervised method for depth estimation from polarimetry

2021

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we…

FOS: Computer and information sciences0209 industrial biotechnologyMonocularComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)PolarimetryComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]02 engineering and technology010501 environmental sciences01 natural sciencesRegularization (mathematics)Term (time)020901 industrial engineering & automation[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]SpecularityRobustness (computer science)Depth mapComputer visionArtificial intelligenceTransparency (data compression)business0105 earth and related environmental sciences
researchProduct

Efficient Nonlinear RX Anomaly Detectors

2020

Current anomaly detection algorithms are typically challenged by either accuracy or efficiency. More accurate nonlinear detectors are typically slow and not scalable. In this letter, we propose two families of techniques to improve the efficiency of the standard kernel Reed-Xiaoli (RX) method for anomaly detection by approximating the kernel function with either {\em data-independent} random Fourier features or {\em data-dependent} basis with the Nystr\"om approach. We compare all methods for both real multi- and hyperspectral images. We show that the proposed efficient methods have a lower computational cost and they perform similar (or outperform) the standard kernel RX algorithm thanks t…

FOS: Computer and information sciencesComputer Science - Machine LearningBasis (linear algebra)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesApproximation algorithmHyperspectral imaging02 engineering and technologyElectrical Engineering and Systems Science - Image and Video ProcessingGeotechnical Engineering and Engineering GeologyRegularization (mathematics)Machine Learning (cs.LG)Nonlinear systemKernel (linear algebra)Kernel (statistics)FOS: Electrical engineering electronic engineering information engineeringAnomaly detectionElectrical and Electronic EngineeringAnomaly (physics)Algorithm021101 geological & geomatics engineeringIEEE Geoscience and Remote Sensing Letters
researchProduct

CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration

2017

International audience; In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for $\ell_1$ regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a ``twicing'' flavor a…

FOS: Computer and information sciencesInverse problemsMathematical optimization[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer Vision and Pattern Recognition (cs.CV)General MathematicsComputer Science - Computer Vision and Pattern RecognitionMachine Learning (stat.ML)Mathematics - Statistics TheoryImage processingStatistics Theory (math.ST)02 engineering and technologyDebiasing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciencesRegularization (mathematics)Boosting010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Variational methods[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Statistics - Machine LearningRefittingMSC: 49N45 65K10 68U10[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingFOS: Mathematics0202 electrical engineering electronic engineering information engineeringCovariant transformation[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsImage restoration[ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML]MathematicsApplied Mathematics[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]EstimatorInverse problem[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Jacobian matrix and determinantsymbolsTwicing020201 artificial intelligence & image processingAffine transformationAlgorithm
researchProduct

Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence

2017

International audience; We focus on the maximum regularization parameter for anisotropic total-variation denoising. It corresponds to the minimum value of the regularization parameter above which the solution remains constant. While this value is well know for the Lasso, such a critical value has not been investigated in details for the total-variation. Though, it is of importance when tuning the regularization parameter as it allows fixing an upper-bound on the grid for which the optimal parameter is sought. We establish a closed form expression for the one-dimensional case, as well as an upper-bound for the two-dimensional case, that appears reasonably tight in practice. This problem is d…

FOS: Computer and information sciences[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine Learning[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]RegularizationPseudo-inverse[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingMachine Learning (stat.ML)[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Total-variation[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]Divergence
researchProduct

On parameterizing thermodynamic descriptions of minerals for petrological calculations

2014

A new regularization approach, termed micro-ϕ, is outlined for parameterizing activity–composition (a–x) relations and other aspects of the thermodynamic descriptions of minerals for petrological calculations. In the context of the symmetric formalism, a formulation of a–x relations that is easily generalizable to multi-component minerals, parameterization with micro-ϕ extends from where there are good data available to constrain, for example, interaction energies, to where there are little or no data. This involves decomposing the interaction energies, which are macroscopic between end-members, into their microscopic components involving interactions between elements on sites. Micro-ϕ invo…

Formalism (philosophy of mathematics)Geochemistry and PetrologyRegularization (physics)ThermodynamicsGeologyGeologyJournal of Metamorphic Geology
researchProduct