Search results for "REINFORCED"

showing 10 items of 236 documents

The effect of surface treatment with Er: YAG laser on shear bond strength of orthodontic brackets to fiber-reinforced composite

2014

Objectives: This study aimed to investigate the effect of surface treatment with Er:YAG laser on shear bond strength (SBS) of orthodontic brackets to fiber-reinforced composite (FRC). Study Design: Ninety human premolars were randomly divided into six groups of 15. FRC bars were bonded to the teeth with a flowable composite (FC) and then underwent following treatments. In group 1 no further treatment was performed. In group 2 the FRC surfaces were covered by FC. An Er:YAG laser was employed to treat FRCs in groups 3 ( 200 mJ/10 Hz) and 4 (300 mJ/15 Hz). The FRC strips in groups 5 and 6 were first covered by FC and then irradiated with Er:YAG laser at 200 mJ/10 Hz (group 5) or 300 mJ/15 Hz (…

Materials scienceBond strengthbusiness.industryResearchComposite numberBracketDentistryOdontologíaOrthodonticsFiber-reinforced compositeLaser:CIENCIAS MÉDICAS [UNESCO]Ciencias de la saludShear bondlaw.inventionlawUNESCO::CIENCIAS MÉDICASFlowable CompositeComposite materialbusinessGeneral DentistryEr:YAG laserJournal of Clinical and Experimental Dentistry
researchProduct

Experimental in situ behaviour of unreinforced masonry elements retrofitted by pre-tensioned stainless steel ribbons

2014

Abstract The results of in situ tests carried out on unreinforced and reinforced poor rubble masonry full-scale walls in the earthquake prone Messina (Italy) area are presented and discussed. This experimental research was aimed at the assessment of the in plane shear behaviour of ancient masonry strengthened with an innovative system for masonry and retrofitting of reinforced concrete element constituted by three-dimensional pre-tensioned stainless steel ribbons. A comparison between different strengthening configurations was made in order to characterise the behaviour of masonry panels under shear-compression load, focusing attention on the diagonal cracking failure mode. The effectivenes…

Materials scienceCAMbusiness.industryWallStainless steel RibbonBuilding and ConstructionStructural engineeringMasonryArchCrackingSettore ICAR/09 - Tecnica Delle CostruzioniShear strengthIn-situ testsShear strengthRetrofittingRubble masonryGeneral Materials ScienceGeotechnical engineeringUnreinforced masonry buildingArchDuctilitybusinessMasonryCivil and Structural Engineering
researchProduct

Behavior of fiber-reinforced concrete columns under axially and eccentrically compressive loads

2010

An experimental investigation into the behavior of 16 short, confined, reinforced concrete columns with and without steel fibers was carried out. The columns with square sections had a concrete core 165 x 165 mm (6.49 x 6.49 in.) at the midsection and were hunched at the ends to apply eccentric loading and prevent boundary effects. The specimens were tested to failure at different strain rates under two loading schemes: concentric compression and eccentric compression with a constant eccentricity. The axial load and axial strains were obtained to evaluate the effects of the presence of steel fibers, the thickness of the cover concrete, and the eccentricity of the applied axial load. The com…

Materials scienceCompressive testbusiness.industryColumnmedia_common.quotation_subjectStructural engineeringFiber-reinforced concreteSteel fiberBuilding and ConstructionSpallCompression (physics)Confined concretelaw.inventionSettore ICAR/09 - Tecnica Delle CostruzioniMoment-curvature diagramlawUltimate tensile strengthEccentricity (behavior)Composite materialbusinessAxial symmetryDuctilityConcrete covermedia_commonCivil and Structural Engineering
researchProduct

A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload

2018

Abstract Compressive behavior of columns strengthened by means of an outer elastic confinement provided e.g. by fiber-reinforced polymer (FRP) jackets has become a main topic in the field of structural retrofitting. In details, the problem of the response assessment of strengthened columns is still under study. Many analytical formulations have been proposed to describe the compressive behavior of confined concrete under both monotonic and cyclic loads. However, the effect of a stress/strain level in the columns already present prior to apply the confinement has been generally neglected until now, also because of the lack of well defined strategies of modeling. In this frame, here, (1) a FE…

Materials scienceConfinement lateral pressure0211 other engineering and technologies020101 civil engineeringMonotonic function02 engineering and technologyConcrete damaged plasticity model0201 civil engineering021105 building & constructionRetrofittingWell-definedfiber reinforced polymer (FRP)SofteningCivil and Structural Engineeringbusiness.industryStructural engineeringFibre-reinforced plasticFinite-element modelingPreloadingFinite element methodConfined concretePreloadSettore ICAR/09 - Tecnica Delle CostruzioniHardening (metallurgy)ABAQUSbusinessConfinement
researchProduct

Analytical stress-strain law of FRP confined masonry in compression: Literature review and design provisions

2017

Abstract The use of Fibre Reinforced Polymer (FRP) wraps has become common in practical applications to retrofit existing columns with poor structural features. Wrapping the member with one or more FRP sheets makes it possible to induce confinement action and enhance strength and ductility. This application has been widely studied and adopted in reinforced concrete members for about twenty years, while its suitability to masonry columns and piers has been investigated during the last decade. The results of several studies were summarized in different design expressions for calculating effective confinement pressure, ultimate compressive stress and strain, and the overall trend of the stress…

Materials scienceConstitutive equation0211 other engineering and technologiesCeramics and Composite02 engineering and technologyIndustrial and Manufacturing EngineeringRetrofit021105 building & constructionMechanics of MaterialComposite materialDuctilityCompression; FRP confinement; Masonry; Retrofit; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringMasonrybusiness.industryMechanical EngineeringStress–strain curveCompressionStructural engineeringFibre-reinforced plasticMasonry021001 nanoscience & nanotechnologyCompression (physics)Strength of materialsSettore ICAR/09 - Tecnica Delle CostruzioniCompressive strengthMechanics of MaterialsCeramics and CompositesFRP confinement0210 nano-technologybusiness
researchProduct

Finite element analysis of the out-of-plane behavior of FRP strengthened masonry panels

2017

Abstract In the present study a numerical model is proposed for the response of out-of-plane loaded calcarenite masonry walls strengthened with vertical CFRP strips applied on the substrate by means of epoxy resin. A simplified structural scheme is considered consisting in a beam fixed at one end, subjected to constant axial load and out-of-plane lateral force monotonically increasing. Two different constraint conditions are taken into account: in the first one, the panel is assumed free to rotate at the top end while, in the second one, the rotation is restrained. Three-dimensional finite elements are used for the calcarenite parts and an equivalent constitutive law available in the litera…

Materials scienceConstitutive equationShell (structure)FRP-masonry interfaceCeramics and CompositeFinite element modeling; FRP strengthening; FRP-masonry interface; Masonry panels; Out-of-plane behavior; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing Engineering02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringFRP strengtheningMechanics of MaterialMasonry panelsComposite materialFinite element modelingMasonry panelbusiness.industryMechanical EngineeringLinear elasticityStructural engineeringMasonryFibre-reinforced plastic021001 nanoscience & nanotechnologyStrength of materialsFinite element method0104 chemical sciencesSettore ICAR/09 - Tecnica Delle CostruzioniMechanics of MaterialsCeramics and Composites0210 nano-technologybusinessBeam (structure)Out-of-plane behavior
researchProduct

Shear strength of steel fiber reinforced concrete beams with stirrups

2006

The present paper proposes a semi-empirical analytical expression that is capable of determining the shear strength of reinforced concrete beams with longitudinal bars, in the presence of reinforcing fibers and transverse stirrups. The expression is based on an evaluation of the strength contribution of beam and arch actions and it makes it possible to take their interaction with the fibers into account. For the strength contribution of stirrups, the effective stress reached at beam failure was considered by introducing an effectiveness function. This function shows the share of beam action strength contribution on the global strength of the beam calculated including the effect of fibers. T…

Materials scienceEffective stressFiber-reinforced concretelaw.inventionlawFiberArchComposite materialStirrupCivil and Structural EngineeringShear-moment interactionbusiness.industryMechanical EngineeringBuilding and ConstructionStructural engineeringStrength of materialsTransverse planeSettore ICAR/09 - Tecnica Delle CostruzioniCompressive strengthShear (geology)Shear strengthMechanics of MaterialsPhysics::Accelerator PhysicsbusinessBeam (structure)Concrete
researchProduct

Simultaneous measurement of temperature and strain in glass fiber/epoxy composites by embedded fiber optic sensors: I. Cure monitoring

2007

In this paper (Part I) the use of fiber optic sensors for real-time monitoring of the cure kinetics of GFRP composites is explored. The proposed sensing system allows the simultaneous measurement of both temperature and strain by monitoring the change in reflected wavelength from two coupled fiber Bragg grating (FBG) sensors that have been embedded into the composite laminate. Instrumented GFRP laminates with 12, 18 and 24 reinforcing plies, respectively, were prepared by means of the vacuum bagging technique. Samples were cured in a thermally controlled oven at 80 degrees C and 30 kPa for 240 min (isothermal stage) and then cooled down to ambient temperature by turning off the heating sour…

Materials scienceFiber Bragg grating (FBG) sensorsComposite numberGlass fiberFiber Bragg gratingComposite cure monitoringSettore ING-IND/12 - Misure Meccaniche E TermicheSITUTemperature mesurementGeneral Materials ScienceCure monitoringElectrical and Electronic EngineeringComposite materialBRAGG GRATING SENSORSCivil and Structural EngineeringOptical fiber sensorEpoxyFibre-reinforced plasticCondensed Matter PhysicsTHERMOSETFiber Bragg grating (FBG) sensors; Optical fiber sensor; Composite cure monitoring; Strain measurement; Temperature mesurementAtomic and Molecular Physics and OpticsMechanics of MaterialsFiber optic sensorvisual_artSignal Processingvisual_art.visual_art_mediumEPOXY-RESINStrain measurementStructural health monitoringFIBRE/EPOXY COMPOSITESSYSTEM
researchProduct

Prediction of crack onset strain in composite laminates at mixed mode cracking

2009

Failure process of continuous fiber reinforced composite laminates in tension usually starts with appearance of intralaminar cracks. In composite laminates with complex lay-ups and/or under combined loading, intralaminar cracks may develop in plies with different reinforcement directions. A necessary part of mixed mode cracking models is the criterion of failure. For propagation-controlled fracture it is usually formulated in terms of energy release rates and their critical values of the particular composite material. Intralaminar fracture toughness of unidirectionally reinforced glass/epoxy composite was experimentally determined at several mode I and mode II ratios. It is found that the c…

Materials scienceFracture mechanicsFiber-reinforced compositeEpoxyKompositmaterial och -teknikComposite laminatesTechnology - Chemical engineeringTeknikvetenskap - KemiteknikCrackingFracture toughnessvisual_artUltimate tensile strengthFracture (geology)visual_art.visual_art_mediumComposite materialComposite Science and Engineering
researchProduct

Discontinuous FRP-Confinement of Masonry Columns

2020

Recent seismic events, all over the world, demonstrated that masonry constructions are prone to brittle collapses when shear or compression capacity is reached. It is clear that, in many real cases, masonry columns need to be strengthened for enhancing their load-carrying capacity and to develop a more ductile response. The Fiber Reinforced Polymers (FRPs) confinement of masonry columns is a well-known technique that may produce these advantages. Unfortunately, full-wrapping insulates the column from the environment; so interstitial humidity can easily occur and cause the acceleration of the masonry's decay. In order to prevent it, partial-confinement is commonly assessed instead of total-j…

Materials scienceGeography Planning and Development0211 other engineering and technologies020101 civil engineering02 engineering and technologySTRIPS0201 civil engineeringlaw.inventionlcsh:HT165.5-169.9BrittlenesslawStrain gaugediscontinuous confinementParametric statistics021110 strategic defence & security studiesanalysis-oriented modelbusiness.industryStructural engineeringEpoxyBuilding and Constructionlcsh:City planningFibre-reinforced plasticMasonrytestingUrban StudiesShear (geology)lcsh:TA1-2040visual_artconfinementvisual_art.visual_art_mediumlcsh:Engineering (General). Civil engineering (General)businessFRP
researchProduct