Search results for "RELAXATION"
showing 10 items of 1162 documents
Enhanced alignment and orientation of polar molecules by vibrational resonant adiabatic passage
2007
The authors show that polar molecules can be adiabatically aligned and oriented by laser pulses more efficiently when the laser frequencies are vibrationally resonant. The aligned molecules are found in a superposition of vibrational pendular states, each associated with the alignment of the rotor in one vibrational state. The authors construct the dressed potential associated with this mechanism. Values of detunings and field amplitudes are given to optimize the degree of alignment and orientation for the CO molecule.
Time-resolved photoisomerization of 1,1′-di-tert-butylstilbene and 1,1′-dicyanostilbene
2016
Abstract Photoisomerization of 1,1′-di-tert-butylstilbene ( 3 ) and 1,1′-dicyanostilbene ( 4 ) is monitored with stationary and broadband transient absorption spectroscopy. The electron affinity of the substituents correlates with the shift of the absorption band. The weak extinction of 3 complicates data interpretation, but comparison with earlier measured 1,1′-dimethylstilbene ( 1 ) and 1,1′-diethylstilbene ( 2 ) helps to assign transient spectra and relaxation paths. For 3 a long-lived perpendicular state P is observed with lifetime τ P = 134 ps in acetonitrile. For 4 τ P = 2.1 ps in acetonitrile and 27 ps in n-hexane, the difference indicating a substantial dipole moment (∼3D) of the …
Effect of molecular Stokes shift on polariton dynamics
2021
When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …
NMR T1-Relaxation Measurements on Paramagnetic Organolanthanides: An Alternative Tool for Structure Determination in Solution
2005
1H NMR investigations were conducted on four paramagnetic organolanthanides, all bearing the tetraisopropylcyclopentadienyl ligand Cp4i (HC5iPr4) in order to verify whether or not interactions observed in the solid state are maintained in solution. In some cases variable-temperature experiments were necessary to enhance the resolution and determine the best conditions for the study. The 1D NMR spectrum could be interpreted in every case. Complementary 2D COSY experiments allowed the full attribution of the signals. T1 (1H) relaxation values were determined for all the paramagnetic complexes at the most suitable temperature, and compared with those of the diamagnetic KCp4i. The same tendency…
Exploring the Slow Relaxation of the Magnetization in CoIII -Decorated {DyIII 2 } Units
2016
We have prepared and structurally characterized a new member of the butterfly-like {CoIII 2DyIII 2} single-molecule magnets (SMMs) through further CoIIIdecoration, with the formula [CoIII 4DyIII 2(OH)2(teaH)2(tea)2(Piv)6] (teaH3=triethanolamine; Piv=trimethylacetate or pivalate). Direct current (DC) susceptibility and magnetization measurements were performed allowing the extraction of possible crystal-field parameters. A simple electrostatic modeling shows reasonable agreement with experimental data. Alternating current (AC) susceptibility measurements under a zero DC field and under small applied fields were performed at different frequencies (i.e., 10–1500 Hz) and at low temperatures (i.…
Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density
2016
The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increa…
Hexanuclear manganese(III) single-molecule magnets based on oxime and azole-type ligands
2019
Abstract Two novel hexanuclear manganese(III) complexes belonging to the Mn6 family of single-molecule magnets (SMMs), of formulae [Mn6(μ3-O)2(H2N-sao)6(bta)2(EtOH)6]·2EtOH·4H2O (1) and [Mn6(μ3-O)2(H2N-sao)6(pta)2(EtOH)6]·4EtOH (2) [H2N-saoH2 = salicylamidoxime, bta = 1,2,3-benzotriazolate anion, pta = 5-phenyl-tetrazolate anion], have been synthesized and characterized structurally and magnetically. Both compounds crystallize in the triclinic system with space group P 1 ¯ (1 and 2). In their crystal packing, adjacent Mn6 complexes are connected through non-coordinating solvent molecules, which are H-bonded to N atoms of azole rings and –NH2 groups of salicylamidoxime ligand. The study of t…
Design of bimetallic magnetic chains based on oxalate complexes: towards single chain magnets
2009
We describe the synthesis, structure and magnetic characterization of several oxalate-based bimetallic 1D systems. We will exemplify how by suitable choice of the molecular building blocks and strict control of their arrangement in the solid state, the magnetic properties of these low-dimensional materials can be tuned to finally obtain bimetallic oxalate chains behaving as single-chain magnets (SCM). First, we will focus on compounds [K(18-crown-6)][MII(bpy)Cr(ox)3] (1, 2; MII = Mn, Co; bpy = C10N2H8). The MnCr derivative behaves as a 1D ferromagnet down to 2 K, the lowest investigated temperature. The lack of magnetic ordering in this chain prompted us to prepare the more anisotropic MnCo…
2015
The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6O2(R-sao)6(X)2(solvent)y] (saoH2=salicylaldoxime; X=mono-anion; y=4–6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6][ClO4]2 family members, in which the coordinating X ions were replaced with non-coordinating anions, opened the gateway to constructing families of novel [Mn6] salts in which the identity and nature of the charge balancing anions could be employed to alter the physical…
Highly Anisotropic Rhenium(IV) Complexes: New Examples of Mononuclear Single-Molecule Magnets
2013
The rhenium(IV) complex (NBu4)2[ReBr4(ox)] (1) (ox = oxalate and NBu4(+) = tetra-n-butylammonium cation) has been prepared and its crystal structure determined by X-ray diffraction. The structure is made up of discrete [ReBr4(ox)](2-) anions and bulky NBu4(+) cations. Each [ReBr4(ox)](2-) anion is surrounded by six NBu4(+) cations, which preclude any significant intermolecular contact between the anionic entities, the shortest rhenium···rhenium distance being 9.373(1) Å. Variable temperature dc and ac magnetic susceptibility measurements and field-dependent magnetization experiments on polycrystalline samples of 1 reveal the occurrence of highly anisotropic magnetically isolated Re(IV) cent…