Search results for "RENORMALIZATION"
showing 10 items of 470 documents
Interaction Of The Vector-Meson Octet With The Baryon Octet In Effective Field Theory
2015
We analyze the constraint structure of the interaction of vector mesons with baryons using the classical Dirac constraint analysis. We show that the standard interaction in terms of two independent SU(3) structures is consistent at the classical level. We then require the self-consistency condition of the interacting system in terms of perturbative renormalizability to obtain relations for the renormalized coupling constants at the one-loop level. As a result we find a universal interaction with one coupling constant which is the same as in the massive Yang-Mills Lagrangian of the vector-meson sector.
Some aspects of the nonperturbative renormalization of the phi^4 model
2007
A nonperturbative renormalization of the phi^4 model is considered. First we integrate out only a single pair of conjugated modes with wave vectors +/- q. Then we are looking for the RG equation which would describe the transformation of the Hamiltonian under the integration over a shell Lambda - d Lambda < k < Lambda, where d Lambda -> 0. We show that the known Wegner--Houghton equation is consistent with the assumption of a simple superposition of the integration results for +/- q. The renormalized action can be expanded in powers of the phi^4 coupling constant u in the high temperature phase at u -> 0. We compare the expansion coefficients with those exactly calculated by the…
Critical Attractor and Universality in a Renormalization Scheme for Three Frequency Hamiltonian Systems
1998
We study an approximate renormalization-group transformation to analyze the breakup of invariant tori for three degrees of freedom Hamiltonian systems. The scheme is implemented for the spiral mean torus. We find numerically that the critical surface is the stable manifold of a critical nonperiodic attractor. We compute scaling exponents associated with this fixed set, and find that they can be expected to be universal.
Dynamical mean-field theory calculation with the dynamical density-matrix renormalization group
2006
Abstract We study the Hubbard model at half band-filling on a Bethe lattice with infinite coordination number at zero temperature. We use the dynamical mean-field theory (DMFT) mapping to a single-impurity Anderson model with a bath whose properties have to be determined self-consistently. For a controlled and systematic implementation of the self-consistency scheme we use the fixed-energy approach to the DMFT. Using the dynamical density–matrix renormalization group method (DDMRG) we calculate the density of states (DOS) with a resolution ranging from 3% of the bare bandwidth W = 4 t at high energies to 0.01% for the quasi-particle peak. The DDMRG resolution and accuracy for the DOS is sup…
Spectral Function of the One-Dimensional Hubbard Model away from Half Filling
2004
We calculate the photoemission spectral function of the one-dimensional Hubbard model away from half filling using the dynamical density matrix renormalization group method. An approach for calculating momentum-dependent quantities in finite open chains is presented. Comparison with exact Bethe Ansatz results demonstrates the unprecedented accuracy of our method. Our results show that the photoemission spectrum of the quasi-one-dimensional conductor TTF-TCNQ provides evidence for spin-charge separation on the scale of the conduction band width.
On numerical relativistic hydrodynamics and barotropic equations of state
2012
The characteristic formulation of the relativistic hydrodynamic equations (Donat et al 1998 J. Comput. Phys. 146 58), which has been implemented in many relativistic hydro-codes that make use of Godunov-type methods, has to be slightly modified in the case of evolving barotropic flows. For a barotropic equation of state, a removable singularity appears in one of the eigenvectors. The singularity can be avoided by means of a simple renormalization which makes the system of eigenvectors well defined and complete. An alternative strategy for the particular case of barotropic flows is discussed.
Diluted Heisenberg Ferromagnets with Competing Ferro- and Antiferromagnetic Interactions: Evidence for a New Universality Class?
1993
The site-diluted classical face-centered cubic (fee) Heisenberg model with exchange between nearest and (J nn > 0) next nearest (J nnn =-J nn /2) neighbors is studied by Monte Carlo simulations using the heatbath algorithm in conjunction with histogram reweighting techniques. Finite size scaling analysis suggests that the diluted system crosses over to a new type of critical behavior, different from that of the pure system, in contrast to the prediction of the Harris criterion. But this model possibly can explain related experimental findings in Eu x Sr 1-x S.
Background independent quantum field theory and gravitating vacuum fluctuations
2019
The scale dependent effective average action for quantum gravity complies with the fundamental principle of Background Independence. Ultimately the background metric it formally depends on is selected self-consistently by means of a suitable generalization of Einstein's equation. Self-consistent backround spacetimes are scale dependent, and therefore "going on-shell" at the points along a given renormalization group (RG) trajectory requires understanding two types of scale dependencies: the (familiar) direct one carried by the off-shell action functional, and an indirect one related to the self-consistent background geometry. This paper is devoted to a careful delineation and analysis of ce…
Renormalization group approach to chaotic strings
2012
Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, may have a profound physical meaning in terms of dynamical models of vacuum fluctuations in stochastically quantized field theories. Here we present analytic results for the invariant density of chaotic strings, as well as for the coupling parameter dependence of given observables of the chaotic string such as the vacuum expectation value. A highly nontrivial and selfsimilar parameter dependence is found, produced by perturbative and nonperturbative effects, for which we develop a mathematical description in terms of suitable scaling functions. Our analytic results are in good agreement with numerical simulati…
Estimation of the critical behavior in an active colloidal system with Vicsek-like interactions
2016
We study numerically the critical behavior of a modified, active Asakura-Oosawa model for colloid-polymer mixtures. The colloids are modeled as self-propelled particles with Vicsek-like interactions. This system undergoes phase separation between a colloid-rich and a polymer-rich phase, whereby the phase diagram depends on the strength of the Vicsek-like interactions. Employing a subsystem-block-density distribution analysis, we determine the critical point and make an attempt to estimate the critical exponents. In contrast to the passive model, we find that the critical point is not located on the rectilinear diameter. A first estimate of the critical exponents $\beta$ and $\nu$ is consist…