Search results for "RENORMALIZATION"
showing 10 items of 470 documents
Hopf algebras, renormalization and noncommutative geometry
1998
We explore the relation between the Hopf algebra associated to the renormalization of QFT and the Hopf algebra associated to the NCG computations of transverse index theory for foliations.
Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism in…
2008
We explore the nonperturbative renormalization group flow of quantum Einstein gravity (QEG) on an infinite dimensional theory space. We consider ``conformally reduced'' gravity where only fluctuations of the conformal factor are quantized and employ the local potential approximation for its effective average action. The requirement of ``background independence'' in quantum gravity entails a partial differential equation governing the scale dependence of the potential for the conformal factor which differs significantly from that of a scalar matter field. In the infinite dimensional space of potential functions we find a Gaussian as well as a non-Gaussian fixed point which provides further e…
Adiabatic regularization and particle creation for spin one-half fields
2013
The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Cosmology with self-adjusting vacuum energy density from a renormalization group fixed point
2001
Cosmologies with a time dependent Newton constant and cosmological constant are investigated. The scale dependence of $G$ and $\Lambda$ is governed by a set of renormalization group equations which is coupled to Einstein's equation in a consistent way. The existence of an infrared attractive renormalization group fixed point is postulated, and the cosmological implications of this assumption are explored. It turns out that in the late Universe the vacuum energy density is automatically adjusted so as to equal precisely the matter energy density, and that the deceleration parameter approaches $q = -1/4$. This scenario might explain the data from recent observations of high redshift type Ia S…
Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation
2002
The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative $\Fbeta$-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in $d=4$. The resulting renormalization group trajectories are classified and their physical relevance is discus…
A class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior
2002
Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function F(k, V) of the Euclidean space-time volume V. A partial differential equation governing its dependence on the scale k is derived and its fixed point is analyzed. For the more restrictive truncation of theory space where F(k, V) is of the form V+V ln V, V+V^2, and V+\sqrt{V}, respectively, the renormalization group equations for the running coupling…
On selfdual spin-connections and asymptotic safety
2016
We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG) equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-)selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein-Cartan gravity without the selfduality condition.
Renormalization group flow of the Holst action
2010
The renormalization group (RG) properties of quantum gravity are explored, using the vielbein and the spin connection as the fundamental field variables. The scale dependent effective action is required to be invariant both under space time diffeomorphisms and local frame rotations. The nonperturbative RG equation is solved explicitly on the truncated theory space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory, probably inequivalent to metric quantum gravity constructed in the same way.
Gluon mass generation in the PT-BFM scheme
2006
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search …
Inverse symmetry breaking and the exact renormalization group
1996
We discuss the question of inverse symmetry breaking at non-zero temperature using the exact renormalization group. We study a two-scalar theory and concentrate on the nature of the phase transition during which the symmetry is broken. We also examine the persistence of symmetry breaking at temperatures higher than the critical one.