Search results for "RESONANCES"

showing 10 items of 67 documents

Innovative technical implementation of the Schumann resonances and its influence on organisms and biological cells

2019

Over the course of time in the digital age, oscillating processes were utilized in various realizations. Life without these became hardly imaginable. Schumann resonances are electromagnetical resonances or eigenfrequencies (radio waves), which originate from the oscillation in a hollow space shell. Their average basic frequency is 7,83Hz. The above-mentioned radio waves emerge from energy discharges such as thunderstorms, lightning or solar wind within the earth's surface and the ionosphere. They exist around the globe. Various scientists have discovered a correlation to our health on the basis of studies and experiments; their absence can result in a variety of disorders from headaches to …

010504 meteorology & atmospheric sciencesSchumann resonancesComputer scienceGeophysics01 natural sciencesLightningField (geography)03 medical and health sciencesSolar wind0302 clinical medicine030220 oncology & carcinogenesisThunderstormIonosphere0105 earth and related environmental sciencesRadio waveIOP Conference Series: Materials Science and Engineering
researchProduct

A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method

2006

[1] The effect of the Earth-ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected in parallel and the other with connections in series. The equations describing propagation through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in the spherical Earth-ionosphere cavity, respectively. The numerical algorithm obtains Schumann resonance frequencies very close to the experimental ones, confirming that this methodology is a valid nu…

Atmospheric ScienceSoil ScienceTransmission-line matrix methodAquatic ScienceOceanographysymbols.namesakeOpticsGeochemistry and PetrologyTransmission lineElectromagnetic cavityEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologyPhysicsEcologySchumann resonancesbusiness.industryPaleontologyResonanceForestryComputational physicsGeophysicsMaxwell's equationsSpace and Planetary SciencesymbolsIonospherebusinessMatrix methodJournal of Geophysical Research
researchProduct

Numerical analysis of ionosphere disturbances and Schumann mode splitting in the Earth-ionosphere cavity

2008

[1] The variability of ionosphere properties plays an important role in the Schumann resonances (SR), amplitudes, frequencies, and Q factor. Therefore, as atmosphere ionization is related to solar activity, SR could be devised as a source of indirect parameters that locally from the surface of the Earth could provide space weather information. A proper understanding of this link to SR parameters can be obtained through finite difference time domain (FDTD) simulations, specifically with the numerically obtained modes and frequencies that relate frequency shifts to the day-night asymmetry and polar inhomogeneities. Day-Night asymmetry is observed to have a minor influence in SR; however, larg…

Atmospheric Sciencemedia_common.quotation_subjectSoil SciencePerturbation (astronomy)Aquatic ScienceSpace weatherOceanographyAsymmetryOpticsGeochemistry and PetrologyIonizationEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and Technologymedia_commonPhysicsEcologySchumann resonancesbusiness.industryPaleontologyForestryComputational physicsGeophysicsAmplitudeSpace and Planetary SciencePolarAstrophysics::Earth and Planetary AstrophysicsIonospherebusinessJournal of Geophysical Research: Space Physics
researchProduct

Resonances in the solar system

2010

We give a description of orbital and spin-orbit resonances in the solar system, providing several examples which include planets, satel- lites, asteroids, rings, Kuiper objects.

Celestial Mechanics Resonances Solar SystemSettore MAT/07 - Fisica Matematica
researchProduct

Strange and charm mesons at FAIR

2010

Presented at the XXXI Mazurian Lakes Conference on Physics, Piaski, Poland, August 30–September 6, 2009.

CharmCBMNuclear TheoryNuclear TheoryScalar ResonancesFOS: Physical sciencesStrange ; Charm ; Mesons ; CBM ; FAIR ; GSI ; Finite temperature ; Spectral functions ; Scalar ResonancesStrange mesonUNESCO::FÍSICA::Física molecular::Moléculas mesónicas y muónicasGSINuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph):FÍSICA [UNESCO]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentNUCLEAR-MATTERFAIREnergyMesonsFinite temperatureHigh Energy Physics::PhenomenologyUNESCO::FÍSICASpectral functionsTemperatureStrangeHigh Energy Physics - PhenomenologyCharm mesonsHigh Energy Physics::Experiment:FÍSICA::Física molecular::Moléculas mesónicas y muónicas [UNESCO]RESONANCES
researchProduct

(B)over-bar(0), B- and (B)over-bar(S)(0) decays into J/psi and K (K)over-bar or pi eta

2015

12 pages.- 6 figures.- v2: discussion added, references added

Chiral perturbation theoryScalar resonancesHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics::Experiment
researchProduct

Searching for a hidden charm h(1) state in the X(4660) -> eta h(1) and X(4660) -> eta D*(D)over-bar* decays

2013

We explore the possibility of experimentally detecting a predicted h(1) inverted right perpendicular I-G(J(PC)) = 0(-)(1(+-))inverted left perpendicular state of hidden charm made out from the D*(D) over bar* interaction. The method consists in measuring the decay of X(4660) into eta D*(D) over bar* and determining the binding energy with respect to the D*(D) over bar* threshold from the shape of the D*(D) over bar* invariant mass distribution. A complementary method consists in looking at the inclusive X(4660) -> eta X decay and searching for a peak in the X invariant mass distribution. We make calculations to determine the partial decay width of X(4660) -> eta h(1) from the measured X(466…

Chiral unitary approachMeson resonancesFísicaHigh Energy Physics::Experiment
researchProduct

Heavy-quark spin symmetry for charmed and strange baryon resonances

2013

We study charmed and strange odd-parity baryon resonances that are generated dynamically by a unitary baryon-meson coupled-channels model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model generates resonances with negative parity from the s-wave interaction of pseudoscalar and vector mesons with 1/2(+) and 3/2(+) baryons in all the isospin, spin, and strange sectors with one, two, and three charm units. Some of our results can be identified with experimental data from several facilities, such as the CLEO, Belle, or BaBar Collaborations, as we…

DYNAMICSQuarkNuclear and High Energy PhysicsParticle physicsCharmNuclear TheoryMesonNuclear TheoryFOS: Physical sciences01 natural sciencesUnitary stateHeavy-quark spin symmetryNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)MESON-EXCHANGE0103 physical sciencesSymmetry breakingNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsDynamically generated baryon resonancesHigh Energy Physics::PhenomenologyFísicaParity (physics)COUPLED-CHANNELBaryonPseudoscalarHigh Energy Physics - PhenomenologyIsospinHigh Energy Physics::Experiment
researchProduct

Properties of D and D-* mesons in the nuclear medium

2009

We study the properties of D and D-* mesons in nuclear matter within a simultaneous self-consistent coupled-channel unitary approach that implements heavy-quark symmetry. The in-medium solution accounts for Pauli blocking effects and for the D and D-* self-energies in a self-consistent manner. We pay special attention to renormalization of the intermediate propagators in the medium beyond the usual cutoff scheme. We analyze the behavior in the nuclear medium of the rich spectrum of dynamically generated baryonic resonances in the C=1 and S=0 sector and their influence on the self-energy and, hence, the spectral function of D and D-* mesons. The D meson quasiparticle peak mixes with Sigma(c)…

DYNAMICSSTATESSYMMETRYNuclear TheoryFísicaSCATTERINGKAON-BARYON INTERACTIONSCOUPLED-CHANNELCHIRAL PERTURBATION-THEORYRESONANCESCHARMBETHE-SALPETER APPROACH
researchProduct

On the co-orbital asteroids in the solar system: medium-term timescale analysis of the quasi-coplanar objects

2023

The focus of this work is the current distribution of asteroids in co-orbital motion with Venus, Earth and Jupiter, under a quasi-coplanar configuration and for a medium-term timescale of the order of 900 years. A co-orbital trajectory is a heliocentric orbit trapped in a 1:1 mean-motion resonance with a given planet. As such, to model it this work considers the Restricted Three-Body Problem in the planar circular case with the help of averaging techniques. The domain of each co-orbital regime, that is, the quasi-satellite motion, the horseshoe motion and the tadpole motion, can be neatly defined by means of an integrable model and a simple two-dimensional map, that is invariant with respec…

Earth and Planetary Astrophysics (astro-ph.EP)FOS: Physical sciencesAstronomy and AstrophysicsMathematical Physics (math-ph)AsteroidsDynamicsOrbitalSpace and Planetary ScienceResonancesTrojan asteroidsCelestial mechanicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct