Search results for "RESONANT ACTIVATION"

showing 6 items of 16 documents

Josephson-junction-based axion detection through resonant activation

2022

We discuss the resonant activation phenomenon on a Josephson junction due to the coupling of the Josephson system with axions. We show how such an effect can be exploited for axion detection. A nonmonotonic behavior, with a minimum, of the mean switching time from the superconducting to the resistive state versus the ratio of the axion energy and the Josephson plasma energy is found. We demonstrate how variations in switching times make it possible to detect the presence of the axion field. An experimental protocol for observing axions through their coupling with a Josephson system is proposed.

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCondensed Matter - Mesoscale and Nanoscale PhysicsFieldsPhysics::Instrumentation and DetectorsCondensed Matter - SuperconductivityHigh Energy Physics::PhenomenologyFOS: Physical sciencesStatistical PhysicsNonlinear DynamicsAstrophysicsParticlesResonant activationCondensed MatterCondensed Matter; Materials ; Applied Physics; Statistical PhysicsNonlinear Dynamics; Gravitation; Cosmology ; AstrophysicsParticles ; FieldsCosmologySuperconductivity (cond-mat.supr-con)High Energy Physics::TheoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)AxionCondensed Matter::SuperconductivityJosephson junctionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Dark matterMaterialsApplied PhysicsGravitation
researchProduct

Role of the colored noise in a FitzHugh-Nagumo system driven by a periodic signal

2007

During these last years the interest in neuronal dynamics increased. The study of this kind of system has been carried out by using the FitzHugh-Nagumo (FHN) model that is a simplified modification of the Hodgkin-Huxley model. Many interesting phenomena can be observed in the presence of fluctuations: modification of detection threshold by manipulation of noisy parameters (FHN model), noise-induced activation and coeherence resonance for suitable noise amplitude (absence of periodic signal), resonant activation for high periodic signals and noise reduction, intrinsic stochastic resonance (ISR) in Hodgkin-Huxley neuron and the enhancement of a weak signal by tuning the subthreshold intrinsic…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStochastic resonanceNoise (signal processing)Mathematical analysisShot noiseWhite noiseNoise Enhanced StabilityColored NoiseNeuronal modelsymbols.namesakeColors of noiseControl theoryGaussian noisePhase noisesymbolsBrownian noiseResonant ActivationNeuronal models; Resonant Activation; Noise Enhanced Stability; Colored NoiseMathematics
researchProduct

Noisy dynamics in long and short Josephson junctions

The study of nonlinear dynamics in long Josephson junctions and the features of a particular kind of junction realized using a graphene layer, are the main topics of this research work. The superconducting state of a Josephson junction is a metastable state, and the switching to the resistive state is directly related to characteristic macroscopic quantities, such as the current the voltage across the junction, and the magnetic field through it. Noise sources can affect the mean lifetime of this superconducting metastable state, so that noise induced effects on the transient dynamics of these systems should be taken into account. The long Josephson junctions are investigated in the sine-Gor…

Transient dynamickinkmean switching timeSettore FIS/02 - Fisica Teorica Modelli E Metodi Matematicigraphenebreathernoise induced effectlong Josephson junctiondynamic resonant activationGaussian noisenoise enhanced stabilitysine-Gordonshort Josephson junctionnonlinear relaxation timeJosephson junctionJosephson junction; sine-Gordon; Transient dynamics; noise induced effect; noise enhanced stability; dynamic resonant activation; stochastic resonant activation; resonant activation; soliton; breather; kink; Gaussian noise; non Gaussian noise; graphene; short Josephson junction; long Josephson junction; mean switching time; nonlinear relaxation time;stochastic resonant activationresonant activationnon Gaussian noisesoliton
researchProduct

Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field

2010

The translocation of molecules across cellular membranes or through synthetic nanopores is strongly affected by thermal fluctuations. In this work we study how the dynamics of a polymer in a noisy environment changes when the translocation process is driven by an oscillating electric field. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics, by taking into account the harmonic interactions between adjacent monomers and the excluded-volume effect by introducing a Lennard–Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by num…

Work (thermodynamics)Field (physics)Polymersmedia_common.quotation_subjectBiophysicsThermal fluctuationsResonant activationMolecular Dynamics SimulationInertiaNoise (electronics)Settore FIS/03 - Fisica Della MateriaMolecular dynamicsStructural BiologyOscillometryMolecular Biologymedia_commonPhysics::Biological PhysicsQuantitative Biology::BiomoleculesPolymer dynamicChemistryDynamics (mechanics)Equations of motionCell BiologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Condensed Matter::Soft Condensed MatterClassical mechanicsModels ChemicalChemical physicsOscillating fieldsThermodynamicsPolymer dynamics; Resonant activation; Oscillating fieldsAlgorithms
researchProduct

Noise phenomena and soliton dynamics in long Josephson junctions

2013

In this work we computationally explore the transient dynamics of a noisy Josephson junction (JJ). Principal purpose is to investigate the behavior of the lifetime of the superconductive state as a function of the system and noise source parameters. The relations between the emerging phenomena and the evolution of the JJ order parameter φ, that is the phase difference between the macroscopic wave functions describing the superconducting condensate in the two electrodes, is deeply investigated. We focus our interest on the switching events from the superconducting metastable state, and in particular on the mean escape time (MET). In the used model, a long JJ can be represented by a string co…

mean escape timebreatherwashboardGaussian noiseSettore FIS/03 - Fisica Della Materianon-Gaussian noisenoise enhanced stabilityLévysine-GordonJosephson junction; sine-Gordon; washboard; Lévy; Gaussian noise; non-Gaussian noise; soliton; breather; mean escape time; noise enhanced stability; resonant activationJosephson junctionresonant activationsoliton
researchProduct

Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System.

2018

The stabilizing effect of quantum fluctuations on the escape process and the relaxation dynamics from a quantum metastable state are investigated. Specifically, the quantum dynamics of a multilevel bistable system coupled to a bosonic Ohmic thermal bath in strong dissipation regime is analyzed. The study is performed by a non-perturbative method based on the real-time path integral approach of the Feynman-Vernon influence functional. We consider a strongly asymmetric double well potential with and without a monochromatic external driving, and with an out-of-equilibrium initial condition. In the absence of driving we observe a nonmonotonic behavior of the escape time from the metastable regi…

quantum statistical methodsQuantum dynamicsquantum Zeno dynamicsGeneral Physics and AstronomyDouble-well potentiallcsh:AstrophysicsReview01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasPhysics and Astronomy (all)functional analytical methodstunnelingMetastability0103 physical scienceslcsh:QB460-466Quantum system010306 general physicslcsh:ScienceQuantum statistical methodQuantum fluctuationQuantum tunnellingPhysicsCondensed matter physicsQuantum noiseFunctional analytical methodQuantum Zeno dynamiclcsh:QC1-999noise enhanced stabilitymetastable potentialdiscrete variable representationOpen systemopen systemsRelaxation (physics)lcsh:Qresonant activationCaldeira-Leggett modellcsh:Physicsquantum systems with finite Hilbert spaceEntropy (Basel, Switzerland)
researchProduct