Search results for "RINGS"
showing 10 items of 434 documents
Modular Calabi-Yau threefolds of level eight
2005
In the studies on the modularity conjecture for rigid Calabi-Yau threefolds several examples with the unique level 8 cusp form were constructed. According to the Tate Conjecture correspondences inducing isomorphisms on the middle cohomologies should exist between these varieties. In the paper we construct several examples of such correspondences. In the constructions elliptic fibrations play a crucial role. In fact we show that all but three examples are in some sense built upon two modular curves from the Beauville list.
Corrigendum: Unirationality of Hurwitz Spaces of Coverings of Degree ≤5
2017
We correct Proposition 3.12 and Lemma 3.13 of the paper published in Vol. 2013, No.13, pp.3006-3052. The corrections do not affect the other statements of the paper. In this note, we correct a flow in the statement of Proposition 3.12 of [1] which also leads to a modification in the statement of Lemma 3.13 of [1]. We recall that in this proposition one considers morphisms of schemes X ?→π Y ?→q S, where q is proper, flat, with equidimensional fibers of dimension n and π is finite, flat and surjective. Imposing certain conditions on the fibers it is claimed that the loci of s € S fulfilling these conditions are open subsets of S. A missing condition should be added and the correct version of…
Irreducible induction and nilpotent subgroups in finite groups
2019
Suppose that $G$ is a finite group and $H$ is a nilpotent subgroup of $G$. If a character of $H$ induces an irreducible character of $G$, then the generalized Fitting subgroup of $G$ is nilpotent.
Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators
2016
In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.
Bounded elements in certain topological partial *-algebras
2011
We continue our study of topological partial *algebras, focusing our attention to the interplay between the various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between the strong and the weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *algebras, emphasizing the crucial role played by appropriate bounded elements, called $\M$-bounded. Finally, some remarks are made concerning representations in terms of the so-called partial GC*-algebras of operators.
An Elementary Proof of a Theorem of Graham on Finite Semigroups
2020
The purpose of this note is to give a very elementary proof of a theorem of Graham that provides a structural description of finite 0-simple semigroups and its idempotent-generated subsemigroups.
Torsors for Difference Algebraic Groups
2016
We introduce a cohomology set for groups defined by algebraic difference equations and show that it classifies torsors under the group action. This allows us to compute all torsors for large classes of groups. We also develop some tools for difference algebraic geometry and present an application to the Galois theory of differential equations depending on a discrete parameter.
Del Pezzo elliptic varieties of degree d <= 4
2019
Let Y be a smooth del Pezzo variety of dimension n>=3, i.e. a smooth complex projective variety endowed with an ample divisor H such that K_Y = (n+1)H. Let d be the degree H^n of Y and assume that d >= 4. Consider a linear subsystem of |H| whose base locus is zero-dimensional of length d. The subsystem defines a rational map onto P^{n-1} and, under some mild extra hypothesis, the general pseudofibers are elliptic curves. We study the elliptic fibration X -> P^{n-1} obtained by resolving the indeterminacy and call the variety X a del Pezzo elliptic variety. Extending the results of [7] we mainly prove that the Mordell-Weil group of the fibration is finite if and only if the Cox ring…
Cohomology and Deformation of Leibniz Pairs
1995
Cohomology and deformation theories are developed for Poisson algebras starting with the more general concept of a Leibniz pair, namely of an associative algebra $A$ together with a Lie algebra $L$ mapped into the derivations of $A$. A bicomplex (with both Hochschild and Chevalley-Eilenberg cohomologies) is essential.