Search results for "RNA Processing"

showing 10 items of 63 documents

Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator

2019

Abstract Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12′s nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar …

TRNA modificationSaccharomyces cerevisiae ProteinsProtein ConformationWobble base pairSaccharomyces cerevisiaeBiologyChaetomiumCrystallography X-Ray03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferATP hydrolysisGeneticsRNA and RNA-protein complexesAnticodonRNA Processing Post-TranscriptionalUridine030304 developmental biologyAdaptor Proteins Signal TransducingAdenosine Triphosphatases0303 health sciencesSelenocysteineRNATRNA bindingCell biologychemistryTransfer RNASelenocysteine incorporationCarrier ProteinsRibosomes030217 neurology & neurosurgery
researchProduct

MODOMICS: a database of RNA modification pathways—2013 update

2012

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A…

TRNA modificationSequence analysisBiologycomputer.software_genre03 medical and health sciences0302 clinical medicineRNA Small NuclearEpitranscriptomicsGeneticsHumansRNA Small NucleolarRNA Processing Post-TranscriptionalSmall nucleolar RNA030304 developmental biologyGeneticsInternet0303 health sciencesDatabaseSequence Analysis RNAMRNA modificationRNAArticlesRibosomal RNAEnzymes3. Good healthTransfer RNARNADatabases Nucleic Acidcomputer030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

Comprehensive transcriptional analysis of the oxidative response in yeast

2008

The oxidative stress response in Saccharomyces cerevisiae has been analyzed by parallel determination of mRNA levels and transcription rates for the entire genome. A mathematical algorithm has been adapted for a dynamic situation such as the response to stress, to calculate theoretical mRNA decay rates from the experimental data. Yeast genes have been grouped into 25 clusters according to mRNA level and transcription rate kinetics, and average mRNA decay rates have been calculated for each cluster. In most of the genes, changes in one or both experimentally determined parameters occur during the stress response. 24% of the genes are transcriptionally induced without an increase inmRNAlevels…

Time FactorsTranscription GeneticSaccharomyces cerevisiaeResponse elementSaccharomyces cerevisiaeBiochemistryModels BiologicalEvolution MolecularFungal ProteinsTranscription (biology)Gene Expression Regulation FungalP-bodiesProtein biosynthesisCluster AnalysisRNA MessengerRRNA processingMolecular BiologyGeneMessenger RNAbiologyCell Biologybiology.organism_classificationMolecular biologyCell biologyOxygenKineticsOxidative StressModels ChemicalRNARibosomes
researchProduct

A complete set of nascent transcription rates for yeast genes

2010

The amount of mRNA in a cell is the result of two opposite reactions: transcription and mRNA degradation. These reactions are governed by kinetics laws, and the most regulated step for many genes is the transcription rate. The transcription rate, which is assumed to be exercised mainly at the RNA polymerase recruitment level, can be calculated using the RNA polymerase densities determined either by run-on or immunoprecipitation using specific antibodies. The yeast Saccharomyces cerevisiae is the ideal model organism to generate a complete set of nascent transcription rates that will prove useful for many gene regulation studies. By combining genomic data from both the GRO (Genomic Run-on) a…

Transcription factoriesSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityGenes FungalDNA transcriptionlcsh:MedicineYeast and Fungal ModelsRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistryGenètica molecularchemistry.chemical_compoundSaccharomycesModel OrganismsMolecular cell biologyTranscripció genèticaGene Expression Regulation FungalRNA polymeraseGeneticsRNA MessengerRNA synthesislcsh:ScienceBiologyRNA polymerase II holoenzymeGeneticsMultidisciplinaryGeneral transcription factorGene Expression Profilinglcsh:RPromoterGenomicsChromatinFunctional GenomicsNucleic acidsGenòmicaRNA processingchemistrybiology.proteinRNAlcsh:QRNA Polymerase IIGene expressionTranscription factor II DTranscription factor II BResearch Article
researchProduct

Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP).

2012

Affinity purification using the 3'-untranslated region (3'-UTR) of the human inducible nitric oxide synthase (iNOS) mRNA identified the cytosolic poly(A)-binding protein (PABP) as a protein interacting with the human iNOS 3'-UTR. Downregulation of PABP expression by RNA interference resulted in a marked reduction of cytokine-induced iNOS mRNA expression without changes in the expression of mRNAs coding for the major subunit of the RNA polymerase II (Pol 2A) or β2-microglobuline (β2M). Along with the mRNA also iNOS protein expression was reduced by siPABP-treatment, whereas in the same cells protein expression of STAT-1α, NF-κB p65, or GAPDH was not altered. Reporter gene analyses showed no …

Untranslated regionCancer ResearchSmall interfering RNAFive prime untranslated regionPhysiologyClinical BiochemistryDown-RegulationNitric Oxide Synthase Type IIBiologyBiochemistryPoly(A)-Binding ProteinsCell Line TumorPoly(A)-binding proteinHumansRNA MessengerRNA Processing Post-TranscriptionalPost-transcriptional regulation3' Untranslated RegionsAU-rich elementMessenger RNABinding SitesThree prime untranslated regionMolecular biologyMutationbiology.proteinCytokinesNitric oxide : biology and chemistry
researchProduct

Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation.

2004

AbstractIron (Fe) is an essential micronutrient for virtually all organisms and serves as a cofactor for a wide variety of vital cellular processes. Although Fe deficiency is the primary nutritional disorder in the world, cellular responses to Fe deprivation are poorly understood. We have discovered a posttranscriptional regulatory process controlled by Fe deficiency, which coordinately drives widespread metabolic reprogramming. We demonstrate that, in response to Fe deficiency, the Saccharomyces cerevisiae Cth2 protein specifically downregulates mRNAs encoding proteins that participate in many Fe-dependent processes. mRNA turnover requires the binding of Cth2, an RNA binding protein conser…

Untranslated regionSaccharomyces cerevisiae ProteinsTranscription GeneticIronSaccharomyces cerevisiaeMolecular Sequence DataDown-RegulationRNA-binding proteinSaccharomyces cerevisiaeBiologyGeneral Biochemistry Genetics and Molecular BiologyCofactorTristetraprolinGene Expression Regulation FungalMRNA degradationmedicineRNA MessengerRNA Processing Post-TranscriptionalMessenger RNABase SequenceBiochemistry Genetics and Molecular Biology(all)Mechanism (biology)Iron deficiencybiology.organism_classificationmedicine.diseaseDNA-Binding ProteinsBiochemistryMutationbiology.proteinPlasmidsCell
researchProduct

Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells

2012

Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient’s tissues. The last objective was to evaluate the nasal ciliary beat fre…

Usher syndromelcsh:Medicinemedicine.disease_causeGene SplicingMolecular cell biologyAutosomal Recessivelcsh:ScienceGeneticsMutationMultidisciplinaryCadherinsMyosin VIIaRNA splicingSensory PerceptionUsher SyndromesResearch ArticleRNA SplicingCadherin Related ProteinsBiologyMyosinsNoseGenetic MutationRetinitis pigmentosamedicineGeneticsotorhinolaryngologic diseasesHumansCiliaBiologyMessenger RNAlcsh:RIntronMutation TypesComputational BiologyGenetic VariationEpithelial CellsHuman Geneticsmedicine.diseaseMolecular biologyRNA processingMutagenesisCase-Control StudiesMutationGenetics of Diseaselcsh:QGene expressionSensory DeprivationPCDH15MinigeneCloningNeuroscience
researchProduct

Regulation of NOS expression in vascular diseases

2020

Nitric oxide synthases (NOS) are the major sources of nitric oxide (NO), a small bioactive molecule involved in the regulation of many cellular processes. One of the most prominent functions of NO is regulation of vasodilatation and thereby control of blood pressure. Most important for vascular tone is NOS3. Endothelial NOS3-generated NO diffuses into the vascular smooth muscle cells, activates the soluble guanylate cyclase resulting in enhanced cGMP concentrations and smooth muscle cell relaxation. However, more and more evidence exist that also NOS1 and NOS2 contribute to vascular function. We summarize the current knowledge about the regulation of NOS expression in the vasculature by tra…

Vascular smooth muscleNitric Oxide Synthase Type IIINOS1CellNitric Oxide Synthase Type IIBlood PressureVasodilationInflammationNitric Oxide Synthase Type INitric OxideMuscle Smooth VascularNitric oxidechemistry.chemical_compoundmedicineAnimalsHumansProtein IsoformsVascular DiseasesRNA Processing Post-TranscriptionalInflammationRegulation of gene expressionInnate immune systemAtherosclerosisImmunity InnateCell biologyGene Expression Regulation Neoplasticmedicine.anatomical_structurechemistryNitric Oxide Synthasemedicine.symptomProtein Processing Post-TranslationalFrontiers in Bioscience-Landmark
researchProduct

Analysis of pseudouridines and other RNA modifications using hydraPsiSeq protocol

2021

Detection of RNA modified nucleotides using deep sequencing can be performed by several approaches, including antibody-driven enrichment and natural or chemically induced RT signatures. However, only very few RNA modified nucleotides generate natural RT signatures and antibody-driven enrichment heavily depends on the quality of antibodies used and may be highly biased. Thus, the use of chemically-induced RT signatures is now considered as the most trusted experimental approach. In addition, the use of chemical reagents allows inclusion of simple "mock-treated" controls, to exclude spontaneous RT arrests, SNPs and other misincorporation-prone sites. Hydrazine is a well-known RNA-specific rea…

chemistry.chemical_classification0303 health sciencesNucleotidesSequence Analysis RNAChemistryRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyComputational biologyGeneral Biochemistry Genetics and Molecular BiologyDeep sequencing03 medical and health sciencesHydrazines0302 clinical medicineReagent[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RNA modificationRNANucleotideRNA Processing Post-TranscriptionalMolecular BiologyPseudouridine030217 neurology & neurosurgeryComputingMilieux_MISCELLANEOUS030304 developmental biology
researchProduct

Detection of RNA modifications

2010

RNA nucleotide modifications are typically of low abundance and frequently go unnoticed by standard detection methods of molecular biology and cell biology. With a burst of knowledge intruding from such diverse areas as genomics, structural biology, regulation of gene expression and immunology, it becomes increasingly clear that many exciting functions of nucleotide modifications remain to be explored. It follows in turn that the biology of nucleotide modification and editing is a field poised to rapidly gain importance in a variety of fields. The detection and analysis of nucleotide modifications present a clear limitation in this respect. Here, various methods for detection of nucleotide …

chemistry.chemical_classificationGeneticsBase SequenceNucleotidesMolecular Sequence DataRNACell BiologyComputational biologyBiologyEnzymeschemistryAbundance (ecology)RNANucleotideRNA Processing Post-TranscriptionalMolecular BiologyRNA Biology
researchProduct