Search results for "RUN"

showing 10 items of 2820 documents

Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments

2021

The main aim of this research was to determine the potential effects of different tillage systems (TT: traditional tillage and RT: reduced tillage) on runoff and erosion at two different locations (Kahramanmaras and Tarsus, Southern Turkey) under (i) fallow, (ii) wheat (Triticumaestivum L.), and (iii) sainfoin (Onobrychissativa L.) crops. Rainfall simulations with intensity of 120 mm h&minus

010504 meteorology & atmospheric sciencesGeography Planning and Developmentlcsh:TJ807-830lcsh:Renewable energy sourcesrunoffManagement Monitoring Policy and Law01 natural sciencesRunoff volumelcsh:Environmental sciences0105 earth and related environmental sciencesSediment yieldlcsh:GE1-350soil erosionextreme rainfall eventsRenewable Energy Sustainability and the Environmentlcsh:Environmental effects of industries and plants04 agricultural and veterinary sciencesrainfall simulationreduced tillageSoil tillageSediment concentrationRunoff coefficientTillagelcsh:TD194-195Agronomy040103 agronomy & agricultureErosion0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffSustainability
researchProduct

A space-time rainfall generator for highly convective Mediterranean rainstorms

2003

Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rai…

010504 meteorology & atmospheric sciencesMeteorology0207 environmental engineering[SDU.STU]Sciences of the Universe [physics]/Earth Sciences02 engineering and technologyMethod of moments (statistics)01 natural sciencesPoint processlcsh:TD1-1066lcsh:Environmental technology. Sanitary engineering020701 environmental engineering[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentlcsh:Environmental sciences0105 earth and related environmental scienceslcsh:GE1-350[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereComputer simulationRain gauge[SDU.OCEAN] Sciences of the Universe [physics]/Ocean AtmosphereSpace timelcsh:QE1-996.5lcsh:Geography. Anthropology. Recreation[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces environment6. Clean waterRunoff modellcsh:Geologylcsh:G13. Climate actionClimatology[SDU.STU] Sciences of the Universe [physics]/Earth SciencesGeneral Earth and Planetary SciencesEnvironmental scienceIntensity (heat transfer)Generator (mathematics)
researchProduct

Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin

2019

Este artículo contiene 16 páginas, 6 figuras, 2 tablas.

010504 meteorology & atmospheric sciencesRunoffErosion; Mediterranean basin; Runoff; Sediment yield; Synoptic weather types0207 environmental engineering[SDU.STU]Sciences of the Universe [physics]/Earth Sciences02 engineering and technology01 natural sciencesMediterranean BasinHydrology (agriculture)Erosão Produção de sedimentos Escoamento Bacia MediterrânicaSoil retrogression and degradationddc:550020701 environmental engineering0105 earth and related environmental sciencesWater Science and TechnologyHydrologyMediterranean basinSediment yieldSedimentInstitut für Umweltwissenschaften und Geographie15. Life on land6. Clean waterSynoptic weather typesErosion13. Climate actionErosion; Mediterranean basin; Runoff; Sediment yield; Synoptic weather types; Water Science and TechnologyErosionEnvironmental scienceSpatial variabilitySoil conservationSurface runoff
researchProduct

Testing simple scaling in soil erosion processes at plot scale

2018

Abstract Explaining scale effects for runoff and erosion improves our understanding and simulation ability of hydrological and erosion processes. In this paper, plot scale effects on event runoff per unit area (Qe), sediment concentration (Ce) and soil loss per unit area (SLe) were checked at El Teularet-Sierra de Enguera experimental site in Eastern Spain. The measurements were carried out for 31 events occurring in the years 2005 and 2007 in bare ploughed plots ranging from 1 to 48 m2. The analysis established the scaling relationship by dimensional analysis and self-similarity theory, and tested this relationship at different temporal scales ranging from event to annual scale. The dimens…

010504 meteorology & atmospheric sciencesScale (ratio)Runoff0208 environmental biotechnologySoil scienceNatural rainfall02 engineering and technology01 natural sciencesHydrology (agriculture)Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliTemporal scalesScaling0105 earth and related environmental sciencesEarth-Surface ProcessesPlotsSedimentPE&RC020801 environmental engineeringScalePlotSediment concentrationSpatial ecologyErosionSoil erosionEnvironmental scienceSurface runoff
researchProduct

Applying the USLE Family of Models at the Sparacia (South Italy) Experimental Site

2016

Soil erosion is a key process to understand the land degradation, and modelling of soil erosion will help to understand the process and to foresee its impacts. The applicability of the Universal Soil Loss Equation (USLE) at event scale is affected by the fact that USLE rainfall erosivity factor does not take into account runoff explicitly. USLE-M and USLE-MM, including the effect of runoff in the event rainfall– runoff erosivity factor, are characterized by a better capacity to predict event soil loss. The specific objectives of this paper were (i) to determine the suitable parameterization of USLE, USLE-M and USLE-MM by using the dataseries of Sparacia experimental site and (ii) to evaluat…

010504 meteorology & atmospheric sciencesScale (ratio)Soil ScienceSoil scienceDevelopment01 natural sciencesDeposition (geology)Soil lossplot soil loUSLE-MMSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental Chemistry0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)Hydrologysoil erosionSediment04 agricultural and veterinary sciencesUniversal Soil Loss Equation040103 agronomy & agricultureLand degradationUSLE-M0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffEvent scaleLand Degradation & Development
researchProduct

Assessing and Modeling Soil Detachment Capacity by Overland Flow in Forest and Woodland of Northern Iran

2020

Land use has significant effects on the erosion process, since it influences the soil detachment capacity by causing an overland flow (Dc). The effects of different land uses on the rill detachment capacity have not been explained in depth, and the hydraulic parameters providing accurate estimates of this soil property have not been completely identified. This study quantifies Dc at low flow rates in woodland and forestland, compared to two other land uses (cropland and grassland), in the Saravan watershed (Northern Iran), and develops prediction models of Dc and rill erodibility (Kr). Dc was measured on undisturbed soil samples, collected in the four land uses, and characterized in terms o…

010504 meteorology & atmospheric sciencesSoil testWater flowWoodlandvegetation cover01 natural sciencesshear stressshallow flowsoil organic matterrill erodibility0105 earth and related environmental sciencesHydrologygeographygeography.geographical_feature_categorysoil erosionSoil organic matterland useForestry04 agricultural and veterinary scienceslcsh:QK900-989RillSoil water040103 agronomy & agricultureErosionlcsh:Plant ecology0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffForests
researchProduct

First study of the heat and gas budget for Sirung volcano, Indonesia

2017

International audience; With at least four eruptions over the last 20 years, Sirung is currently one of the more active volcanoes in Indonesia. However, due to its remoteness, very little is known about the volcano and its hyperacid crater lake. We report here on the first measurements of gas and heat emissions from the volcano. Notable is the substantial heat loss from the crater lake surface, amounting to 220 MW. In addition, 17 Gg of SO2, representing 0.8% of Indonesian volcanic SO2 contribution into the atmosphere, 11 Gg of H2S, 17 Gg of CO2, and 550 Gg of H2O are discharged into the atmosphere from the volcano annually. The volatiles degassed from Sirung magmas are subjected to hydroth…

010504 meteorology & atmospheric sciencesSulfideEarth science010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationAtmosphereHeat loGeochemistry and PetrologyCrater lake[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologySedimentology0105 earth and related environmental scienceschemistry.chemical_classificationgeographygeography.geographical_feature_categoryLead (sea ice)Heat lossHeat lossesSirung volcanochemistryVolcano[SDU]Sciences of the Universe [physics]Degassing budgetCrater lakeGeologyBulletin of Volcanology
researchProduct

Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment

2018

Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management pract…

010504 meteorology & atmospheric sciencesSòls ErosióManagement Monitoring Policy and Law01 natural sciencesRainwater harvestingSoil managementcrop growth stagessimulated rainfall0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and Technologysoil erosionbiologySowing04 agricultural and veterinary sciencesbiology.organism_classificationPE&RCTillageInfiltration (hydrology)Loess PlateauAgronomySeedling040103 agronomy & agriculturehoeing tillage0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffSoil conservationJournal of Arid Land
researchProduct

Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating

2015

cited By 23; The underlying physics of intermediate-depth earthquakes have been an enigmatic topic; several studies support either thermal runaway or dehydration reactions as viable mechanisms for their generation. Here we present fully coupled thermomechanical models that investigate the impact of grain size evolution and energy feedbacks on shear zone and pseudotachylite formation. Our results indicate that grain size reduction weakens the rock prior to thermal runaway and significantly decreases the critical stress needed for thermal runaway, making it more likely to result in intermediate-depth earthquakes at shallower depths. Furthermore, grain size is reduced in and around the shear z…

010504 meteorology & atmospheric sciencesThermal runawaySubduction[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]Geology[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]Geodynamics010502 geochemistry & geophysics01 natural sciencesGrain sizeMatrix (geology)13. Climate actionShear zonePetrologyGeologyStrengthening mechanisms of materialsSeismology0105 earth and related environmental sciencesMylonite
researchProduct

Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems

2020

In arid and semi-arid ecosystems, shortage of water can trigger changes in landscapes’ structures and function leading to degradation and desertification. Hydrological connectivity is a useful framework for understanding water redistribution and scaling issues associated with runoff and sediment production, since human and/or natural disturbances alter surface water availability and pathways increasing/decreasing connectivity. In this paper, we illustrate the use of the connectivity framework for several examples of dryland systems that are analysed at a variety of spatial and temporal scales. In doing so, we draw particular attention to the analysis of coevolution of system structures and …

010504 meteorology & atmospheric sciencesWater en Landgebruikmedia_common.quotation_subjectWetlandSemi-arid environments01 natural sciencesSoilBodemSoil Water and Land UseTemporal scales0105 earth and related environmental sciencesEarth-Surface Processesmedia_commongeographygeography.geographical_feature_categoryWIMEKbusiness.industryWater and Land UseEnvironmental resource management04 agricultural and veterinary sciencesVegetation15. Life on landBodemfysica en LandbeheerPE&RCHydrological connectivityAridLandscape evolutionGeoecologyBodem Water en LandgebruikSoil Physics and Land ManagementDesertification040103 agronomy & agricultureLand degradationErosion0401 agriculture forestry and fisheriesEnvironmental scienceLand degradationbusinessSurface runoff
researchProduct