Search results for "Radial distribution function"

showing 10 items of 26 documents

On the Structure of Amorphous Metals

2005

Amorphous metalMaterials scienceChemical physicsStructure functionStructure (category theory)Radial distribution function
researchProduct

A generalized Newton iteration for computing the solution of the inverse Henderson problem

2020

We develop a generalized Newton scheme IHNC for the construction of effective pair potentials for systems of interacting point-like particles.The construction is made in such a way that the distribution of the particles matches a given radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an approximate evaluation of the inverse of the Jacobian of the forward operator. In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the IHNC algorithm requires only a single molecular dynamics computation of the radial distribution function per iteration step, and no further expensive cross-correlations. Numerical experiments…

Applied MathematicsGeneral EngineeringInverseNumerical Analysis (math.NA)010103 numerical & computational mathematicsRadial distribution function01 natural sciencesComputer Science Applications010101 applied mathematicssymbols.namesakeScheme (mathematics)FOS: MathematicssymbolsApplied mathematicsMathematics - Numerical AnalysisGranularity0101 mathematicsNewton's method65Z05 82B21MathematicsInverse Problems in Science and Engineering
researchProduct

Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

2018

AIF acknowledge support by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02 03ER15476. AIF acknowledges support by the Laboratory Directed Research and Development Program through LDRD 18-047 of Brookhaven National Laboratory under U.S. Department of Energy Contract No. DE-SC0012704 for initiating his research in machine learning methods. The help of the beamline staff at ELETTRA (project 20160412) synchrotron radiation facility is acknowledged. RMC-EXAFS and MD-EXAFS simulations were performed on the LASC cluster-type computer at Institute of Solid State Physics of the University of Latvia.

AusteniteWork (thermodynamics)Materials scienceGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyRadial distribution function01 natural sciencesSpectral lineX-ray absorption fine structureChemical physics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physics0210 nano-technologySpectroscopyAbsorption (electromagnetic radiation)Curse of dimensionalityPhysical Review Letters
researchProduct

Optimal calculation of the pair correlation function for an orthorhombic system

2012

We present a new computational method to calculate arbitrary pair correlation functions of an orthorombic system in the most efficient way. The algorithm is demonstrated by the calculation of the radial distribution function of shock compressed liquid hydrogen.

Chemical Physics (physics.chem-ph)HydrogenCompressed fluidMathematical analysisFOS: Physical scienceschemistry.chemical_elementGeometryComputational Physics (physics.comp-ph)Radial distribution functionShock (mechanics)chemistryPhysics - Chemical PhysicsPair correlationOrthorhombic crystal systemPhysics - Computational PhysicsMathematicsPhysical Review E
researchProduct

Investigating the cooling rate dependence of amorphous silica: A computer simulation study

1996

We use molecular dynamics computer simulations to study the dependence of the properties of amorphous silica on the cooling rate with which the glass has been produced. In particular we show that the density, the glass transition temperature, the radial distribution function and the distribution of the size of the rings depend on the cooling rate.

Computer simulationDistribution (number theory)ChemistryGeneral Chemical EngineeringThermodynamicsComputer experimentRadial distribution functionCondensed Matter::Disordered Systems and Neural NetworksCondensed Matter::Soft Condensed MatterMolecular dynamicsCooling ratePhysical chemistryAmorphous silicaGlass transitionBerichte der Bunsengesellschaft für physikalische Chemie
researchProduct

Density functional study of amorphous, liquid and crystalline Ge(2)Sb(2)Te(5): homopolar bonds and/or AB alternation?

2008

The amorphous, liquid and crystalline phases of the phase change material Ge(2)Sb(2)Te(5) (GST) have been studied by means of density functional/molecular dynamics simulations. The large sample (460 atoms and 52 vacancies in the unit cell) and long simulations (hundreds of picoseconds) provide much new information. Here we extend our original analysis (2007 Phys. Rev. B 76 235201) in important ways: partial coordination numbers and radial distribution functions, bond angle distributions, new local order parameters, vibration frequencies, and the charges on atoms and vacancies. The valence band densities of states in amorphous and crystalline GST are compared with ones from x-ray photoemissi…

Condensed matter physicsChemistryPhotoemission spectroscopyCoordination numberCondensed Matter PhysicsRadial distribution functionAmorphous solidCondensed Matter::Materials ScienceCrystallographyMolecular dynamicsMolecular geometryPicosecondPolyamorphismGeneral Materials ScienceJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Scaling theory for radial distributions of star polymers in dilute solution in the bulk and at a surface, and scaling of polymer networks near the ad…

1991

Monomer density profiles ρ(r) and center–end distribution functions g(rCE) of star polymers are analyzed by using a scaling theory in arbitrary dimensions d, considering dilute solutions and the good solvent limit. Both the case of a free star in the bulk and of a center‐adsorbed star at a free surface are considered. In the latter case of a semi‐infinite problem, a distinction is made between repulsive walls, attractive walls—where for large arm length l the configuration of the star is quasi‐(d−1) dimensional—, and ‘‘marginal walls’’ where for l→∞ the transition from d‐dimensional structure occurs. For free stars, ρ(r) behaves as r−d+1/ν for small r, where ν is the exponent describing the…

Distribution functionCondensed matter physicsChemistryFree surfaceExponentGeneral Physics and AstronomyRadiusPhysical and Theoretical ChemistryStar (graph theory)Radial distribution functionGyrationScaling
researchProduct

Monte Carlo simulation of many-arm star polymers in two-dimensional good solvents in the bulk and at a surface

1991

A Monte Carlo technique is proposed for the simulation of statistical properties of many-arm star polymers on lattices. In this vectorizing algorithm, the length of each arml is increased by one, step by step, from a starting configuration withl=1 orl=2 which is generated directly. This procedure is carried out for a large sample (e.g., 100,000 configurations). As an application, we have studied self-avoiding stars on the square lattice with arm lengths up tol max=125 and up tof=20 arms, both in the bulk and in the geometry where the center of the star is adsorbed on a repulsive surface. The total number of configurations, which behaves asN∼l γ G–1μ fl , whereμ=2.6386 is the usual effective…

Distribution functionCoordination numberMonte Carlo methodStatistical and Nonlinear PhysicsGeometryStar (graph theory)Radial distribution functionSquare latticeMolecular physicsCritical exponentMathematical PhysicsSelf-avoiding walkMathematicsJournal of Statistical Physics
researchProduct

Classical ionic fluids in the mean spherical approximation

1980

The recently obtained analytical solution of the mean spherical approximation has been used to calculate thermodynamic and structural properties of aqueous solutions of asymmetric electrolytes. The same approximation has also been used to calculate structure functions of pure and mixed molten salts. The agreement between experimental or “quasi-experimental” structure functions and those obtained within the framework of the MSA is quite good especially when the ionic radii are obtained by fitting the long wavelength limit of the structure functions to the isothermal compressibility of the system, under the condition that the diameter ratio is the same as in the crystal.

Ionic radiusLong wavelength limitChemistryIonic bondingThermodynamicsElectrolyteRadial distribution functionInorganic ChemistryCrystalMaterials ChemistryCompressibilityPhysical chemistryPhysical and Theoretical ChemistryMolten saltInorganica Chimica Acta
researchProduct

EDA: EXAFS data-analysis software package

2021

The EXAFS data-analysis software package EDA consists of a suite of programs running under a Windows operating system environment that is designed to perform all steps of conventional EXAFS data analysis such as extraction of the XANES/EXAFS parts of the X-ray absorption coefficient, Fourier filtering and EXAFS fitting using the Gaussian and cumulant models. The package also includes two advanced approaches which allow the reconstruction of the radial distribution function (RDF) from EXAFS based on the regularization-like method and the calculation of configuration-averaged EXAFS using a set of atomic configurations obtained from molecular-dynamics or Monte Carlo simulations.---- / / / ----…

Materials scienceComputer scienceGaussianCarry (arithmetic)Monte Carlo methodFOS: Physical sciencesMaximum entropy method02 engineering and technologyRadial distribution function01 natural sciencesComputational scienceSet (abstract data type)symbols.namesakeCondensed Matter::Materials ScienceCondensed Matter::Superconductivity0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Analysis softwareElectrical and Electronic Engineering010306 general physics010302 applied physicsCondensed Matter - Materials ScienceExtended X-ray absorption fine structureComputer programImproved algorithmMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsXANESElectronic Optical and Magnetic MaterialsEXAFSIBM PC compatibleMicrosoft Windowssymbols0210 nano-technology
researchProduct