Search results for "Radiation detector"

showing 3 items of 53 documents

Microscale X-ray mapping of CZT arrays: Spatial dependence of amplitude, shape and multiplicity of detector pulses

2018

In this work, we present the results of a microscale X-ray mapping of a 2 mm thick CZT pixel detector, with pixel pitches of 500 μm and 250 μm, using collimated synchrotron X-ray sources at the Diamond Light source (U. K.). The detector is dc coupled to a fast and low noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to perform online fast pulse shape and height analysis (PSHA), with low dead time and reasonable energy resolution at both low and high fluxes. The detector allows high bias voltage operation (> 5000 V/cm) and good energy resolution at room temperature (5.3 %, 2.3 % and 2.1 % FWHM at 22.1, 59…

radiation detectorRadiology Nuclear Medicine and ImagingNuclear and High Energy PhysicsMaterials sciencePreamplifier01 natural sciencesCollimated light030218 nuclear medicine & medical imagingCharge sharinglaw.invention03 medical and health sciences0302 clinical medicineOpticslaw0103 physical scienceshigh fluxmappingInstrumentation010308 nuclear & particles physicsbusiness.industryASICDetectorBiasingDead timeSynchrotronSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CZTFull width at half maximumsinchrotron radiationbusiness
researchProduct

Thermoelectric radiation detector based on a superconductor-ferromagnet junction : Calorimetric regime

2018

We study the use of a thermoelectric junction as a thermal radiation detector in the calorimetric regime, where single radiation bursts can be separated in time domain. We focus especially on the case of a large thermoelectric figure of merit ZT affecting significantly, for example, the relevant thermal time scales. This work is motivated by the use of hybrid superconductor/ferromagnet systems in creating an unprecedentedly high low-temperature ZT even exceeding unity. Besides constructing a very general noise model which takes into account cross correlations between charge and heat noise, we show how the detector signal can be efficiently multiplexed by the use of resonant LC circuits givi…

superconducting filmsthermodynamic measurements and instrumentationradiation detectorssignaalinkäsittelyilmaisimetinductorsferromagnetic materialsquasiparticlelämpösäteilytelecommunications engineeringfononitsuprajohteet
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct