Search results for "Radiative forcing"

showing 10 items of 60 documents

Simulation of a biomass-burning plume: Comparison of model results with observations

2002

[1] We have simulated the dynamical evolution of the plume from a prescribed biomass fire, using the active tracer high- resolution atmospheric model (ATHAM). Initialization parameters were set to reflect the conditions during the fire. The model results are compared with airborne remote-sensing and in situ measurements of the plume. ATHAM reproduces the injection height (250-600 m) and the horizontal extent of the plume (similar to4 km) with good accuracy. The aerosol mass concentrations are underestimated but still in the range of the observations. Remaining differences between the model results and the measurements are attributed to limited meteorological and fire emission information. A…

Atmospheric ScienceEcologyMicrophysicsMeteorologySolar zenith anglePaleontologySoil ScienceForestryAtmospheric modelAquatic ScienceRadiative forcingOceanographyPlumeAerosolGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Radiative transferOptical depthEarth-Surface ProcessesWater Science and Technology
researchProduct

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano …

2011

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…

Atmospheric ScienceEuropean aerosol010504 meteorology & atmospheric sciencesaerosolAerosol radiative forcingClimateclouds010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:Chemistry/dk/atira/pure/sustainabledevelopmentgoals/climate_actionAerosol cloud11. SustainabilitySDG 13 - Climate Actionddc:550particle propertiesEnvironmental policysaturation vapor-pressureschemical-transport modelMiljövetenskapair qualitylcsh:QC1-999General Circulation Model/dk/atira/pure/subjectarea/asjc/1900/1902EUCAARIEELS - Earth Environmental and Life SciencesION-INDUCED NUCLEATIONChemical transport modelMeteorologyEarth & EnvironmentEnergy / Geological Survey NetherlandsSIMULATION CHAMBER SAPHIRnuclei number concentrationSECONDARY ORGANIC AEROSOLpure component propertiesAir quality indexEnvironmental quality0105 earth and related environmental sciencesPARTICLE FORMATION EVENTSAtmosphärische Spurenstoffe[CHIM.CATA]Chemical Sciences/CatalysisCAS - Climate Air and Sustainability[SDE.ES]Environmental Sciences/Environmental and SocietyFalconAerosollcsh:QD1-99913. Climate actionmixed-phase cloudsEnvironmental scienceatmospheric sulfuric-acidEnvironmental Scienceslcsh:Physics
researchProduct

2021

Abstract. Sustainable aviation fuels can reduce contrail ice numbers and radiative forcing by contrail cirrus. We measured apparent ice emission indices for fuels with varying aromatic content at altitude ranges of 9.1–9.8 and 11.4–11.6 km. Measurement data were collected during the ECLIF II/NDMAX flight experiment in January 2018. The fuels varied in both aromatic quantity and type. Between a sustainable aviation fuel blend and a reference fuel Jet A-1, a maximum reduction in apparent ice emission indices of 40 % was found. We show vertical ice number and extinction distributions for three different fuels and calculate representative contrail optical depths. Optical depths of contrails (0.…

Atmospheric ScienceJet (fluid)AltitudeBiofuelExtinction (optical mineralogy)engineeringAviation fuelEnvironmental scienceCirrusengineering.materialRadiative forcingAtmospheric sciencesOptical depthAtmospheric Chemistry and Physics
researchProduct

Effects of ice crystal habit on thermal infrared radiative properties and forcing of cirrus

2007

[1] The impact of assumed ice crystal morphology on thermal infrared (IR) radiative properties of subtropical cirrus is quantified. In particular, the crystal-shape-dependent profiles of downwelling and upwelling thermal IR (broadband and spectral) irradiances and the radiative forcing of cirrus (at the top and bottom of the atmosphere) are investigated. For this purpose, airborne measurements of ice crystal size distribution (in terms of ice crystal maximum dimension) from the CRYSTAL-FACE campaign and a recently published library of thermal IR optical properties of nonspherical ice crystal habits are implemented into radiative transfer simulations. Two cirrus cases are studied in detail: …

Atmospheric ScienceMaterials scienceInfraredPhysics::OpticsSoil ScienceAstrophysics::Cosmology and Extragalactic AstrophysicsAquatic ScienceOceanographyOpticsGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Radiative transferAbsorption (electromagnetic radiation)Astrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and TechnologyIce cloudEcologyIce crystalsbusiness.industryPaleontologyForestryRadiative forcingComputational physicsGeophysicsSpace and Planetary ScienceInfrared windowCirrusAstrophysics::Earth and Planetary AstrophysicsbusinessJournal of Geophysical Research
researchProduct

Ground-based measured and calculated spectra of actinic flux density and downward UV irradiance in cloudless conditions and their sensitivity to aero…

2003

Ground-based spectral measurements of actinic flux density (300–660 nm wavelength) and downward UV irradiance (300–324 nm) under cloudless conditions have been compared with the results of one-dimensional radiative transfer calculations employing concurrent airborne vertical profile measurements of aerosol particle size distributions. Good agreement (within ±10%) between measured and calculated spectra was found. The remaining differences were explained by uncertainties inherent in the aerosol particle microphysical input data and the column ozone content. A respective sensitivity analysis of the calculated spectra, which was based on the observed variability of microphysical properties, ha…

Atmospheric ScienceMaterials scienceParticle numberIrradianceSoil ScienceAquatic ScienceOceanographyAtmospheric sciencesSpectral lineOpticsGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Radiative transferUV irradiancePhysics::Atmospheric and Oceanic Physicsactinic fluxEarth-Surface ProcessesWater Science and Technologyradiative transfer simulationstransmission and scattering of radiationEcologybusiness.industryPaleontologyForestryaerosols and particlesAerosolWavelengthGeophysicsSpace and Planetary ScienceParticle-size distributionParticlebusinessaerosol radiative forcingJournal of Geophysical Research
researchProduct

On the direct and semidirect effects of Saharan dust over Europe: A modeling study

2007

[1] On the basis of a new regional dust model system, the sensitivity of radiative forcing to dust aerosol properties and the impact on atmospheric dynamics were investigated. Uncertainties in optical properties were related to uncertainties in the complex spectral refractive index of mineral dust. The climatological-based distribution of desert-type aerosol in the radiation scheme of the nonhydrostatic regional model LM was replaced by dust optical properties from spectral refractive indices, derived from in situ measurements, remote sensing, bulk measurements, and laboratory experiments, employing Mie theory. The model computes changes in the solar and terrestrial irradiance from a spatia…

Atmospheric ScienceMeteorologyMie scatteringIrradianceSoil ScienceForcing (mathematics)Aquatic ScienceMineral dustOceanographyAtmospheric sciencesAtmosphereGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Radiative transferAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy AstrophysicsEarth-Surface ProcessesWater Science and TechnologyEcologyPaleontologyForestryRadiative forcingAerosolGeophysicsSpace and Planetary ScienceEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsJournal of Geophysical Research: Atmospheres
researchProduct

Organic and inorganic bromine measurements around the extratropical tropopause and lowermost stratosphere: insights into the transport pathways and t…

2021

We report on measurements of total bromine (Brtot) in the upper troposphere and lower stratosphere taken during 15 flights with the German High Altitude and LOng range research aircraft (HALO). The research campaign WISE (Wave-driven ISentropic Exchange) included regions over the North Atlantic, Norwegian Sea, and northwestern Europe in fall 2017. Brtot is calculated from measured total organic bromine (Brorg) added to inorganic bromine (Bryinorg), evaluated from measured BrO and photochemical modeling. Combining these data, the weighted mean [Brtot] is 19.2±1.2 ppt in the northern hemispheric lower stratosphere (LS), in agreement with expectations for Brtot in the middle stratosphere (Enge…

Atmospheric SciencePhysicsQC1-999Radiative forcingAtmospheric sciencesTrace gasTroposphereEarth sciencesChemistryMiddle latitudesddc:550Environmental scienceEast Asian MonsoonTropopauseStratosphereQD1-999Air massAtmospheric Chemistry and Physics
researchProduct

Sensitivity of the atmospheric temperature profile to the aerosol absorption in the presence of dust

2014

Abstract Radiative transfer simulations in the shortwave (SW) and longwave (LW) spectral regions have been carried out to investigate the time evolution of the atmospheric heating/cooling rates and their influence on the temperature profiles under different vertical distributions of the aerosol absorption. The case study is based on measurements made at Rome, Italy, on 20 June 2007, when a dust layer was present above the urban boundary layer (BL) and the column aerosol optical depth at 550 nm was about 0.37. Column-integrated aerosol optical depth and single scattering albedo, as well as vertical profiles of aerosol extinction and meteorological variables have been derived from observation…

Atmospheric ScienceSingle-scattering albedoChemistryLongwaveAerosol radiative forcingSensible heatAtmospheric sciencesAtmospheric temperatureAerosolTemperature profileRadiative transferAerosol absorption/scatteringAerosol radiative forcing;Aerosol absorption/scattering;Atmospheric heating rate;Temperature profileAbsorption (electromagnetic radiation)ShortwaveGeneral Environmental ScienceAtmospheric heating rate
researchProduct

Altitude-resolved shortwave and longwave radiative effects of desert dust in the Mediterranean during the GAMARF campaign: Indications of a net daily…

2015

Desert dust interacts with shortwave (SW) and longwave (LW) radiation, influencing the Earth radiation budget and the atmospheric vertical structure. Uncertainties on the dust role are large in the LW spectral range, where few measurements are available and the dust optical properties are not well constrained. The first airborne measurements of LW irradiance vertical profiles over the Mediterranean were carried out during the Ground-based and Airborne Measurements of Aerosol Radiative Forcing (GAMARF) campaign, which took place in spring 2008 at the island of Lampedusa. The experiment was aimed at estimating the vertical profiles of the SW and LW aerosol direct radiative forcing (ADRF) and …

Atmospheric ScienceSolar zenith angleLongwaveRadiative forcingAtmospheric sciencesAerosolAtmosphereGeophysicsAtmospheric radiative transfer codesSpace and Planetary ScienceEarth and Planetary Sciences (miscellaneous)Radiative transferEnvironmental scienceShortwaveJournal of Geophysical Research: Atmospheres
researchProduct

2012

Abstract. We present a numerical modelling study investigating the impact of mineral dust on cloud formation over the Eastern Mediterranean for two case studies: (i) 25 September 2008 and (ii) 28/29 January 2003. In both cases dust plumes crossed the Mediterranean and interacted with clouds forming along frontal systems. For our investigation we used the fully online coupled model WRF-chem. The results show that increased aerosol concentrations due to the presence of mineral dust can enhance the formation of ice crystals. This leads to slight shifts of the spatial and temporal precipitation patterns compared to scenarios where dust was not considered to act as ice nuclei. However, the total…

Atmospheric Scienceeducation.field_of_study010504 meteorology & atmospheric sciencesIce crystalsPopulation010501 environmental sciencesRadiative forcingMineral dustAtmospheric sciencescomplex mixtures01 natural sciences13. Climate actionClimatologyIce nucleusEnvironmental scienceCloud condensation nucleisense organsPrecipitationeducation0105 earth and related environmental sciencesOrographic liftAtmospheric Chemistry and Physics
researchProduct