Search results for "Raphe"

showing 10 items of 839 documents

Stepwise Lateral Extension of Phenyl‐Substituted Linear Polyphenylenes

2019

Polyphenylenes (PPs) are unique polymers showing high mechanical strength and chemical stability, and having potential applications, for example, in proton transfer and gas‐separation membranes. Moreover, phenyl‐substituted linear PPs can serve as precursors for bottom‐up syntheses of graphene nanoribbons (GNRs), a new class of nanoscale carbon materials that appear promising for nanoelectronics. Notably, lateral extensions of linear PPs with appropriate “branched” phenyl substituents, that is, avoiding spatial overlap of benzene rings in their projections into a plane, can lead to wider GNRs with modulated electronic and optical properties. GNRs with widths up to ≈2 nm are obtained, but sy…

MapleMaterials sciencePolymers and Plastics010405 organic chemistryOrganic Chemistry02 engineering and technologyengineering.material021001 nanoscience & nanotechnology010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceschemistry.chemical_compoundCyclopentadienonechemistryPolymer chemistryMaterials ChemistryLateral extensionengineeringPhysical and Theoretical Chemistry0210 nano-technologyGraphene nanoribbonsMacromolecular Chemistry and Physics
researchProduct

« Marey : Ne me prenez pas dans l'engrenage du cinématographe.... », Recueil des Travaux-tome 23, Société d'Histoire et d'Archéologie de Beaune

2005

International audience

MareyDemenÿ[SHS.INFO]Humanities and Social Sciences/Library and information sciences[ SHS.INFO ] Humanities and Social Sciences/Library and information sciencescinématographecinémachronophotographieComputingMilieux_MISCELLANEOUSJanssen[SHS.INFO] Humanities and Social Sciences/Library and information sciences
researchProduct

The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies

2017

The ultrafast dynamics and conductivity of photoexcited graphene can be explained using solely electronic effects.

Materials SciencePhysics::OpticsFOS: Physical sciences02 engineering and technology01 natural sciences7. Clean energylaw.inventionCondensed Matter::Materials ScienceElectrical resistivity and conductivitylawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Chemical Physics010306 general physicsComputer Science::DatabasesResearch ArticlesPhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsScatteringGraphenePhotoconductivitygraphene ultrafast carrier dynamicSciAdv r-articlesFermi energyPhysik (inkl. Astronomie)Condensed Matter Physics021001 nanoscience & nanotechnologyBoltzmann equation3. Good healthPhotoexcitationMultiple exciton generation0210 nano-technologyResearch ArticleScience Advances
researchProduct

Dispersion and Stabilization of Exfoliated Graphene in Ionic Liquids.

2019

The liquid-phase exfoliation of graphite is one of the most promising methods to increase production and commercial availability of graphene. Because ionic liquids can be easily obtained with chosen molecular structures and tuneable physicochemical properties, they can be use as media to optimise the exfoliation of graphite. The under- standing of the interactions involved between graphite and various chemical functions in the solvent ions will be helpful to find liquids capable of dissociating and stabilising im- portant quantities of large graphene layers. After a step of sonication, as a mechanical precursor, samples of suspended exfoliated graphene in different ionic liquids have been c…

Materials science02 engineering and technology010402 general chemistry01 natural sciencesIonlaw.inventionionic liquidslcsh:Chemistrychemistry.chemical_compoundlawsuspensionGraphiteAlkylComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationgraphiteGraphenegrapheneCorrectionGeneral Chemistryexfoliation021001 nanoscience & nanotechnologyExfoliation joint0104 chemical sciencesDielectric spectroscopy[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryChemistrylcsh:QD1-999chemistryChemical engineeringIonic liquid0210 nano-technologyTrifluoromethanesulfonate
researchProduct

Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer

2019

Knowledge of the structure of interfacial water molecules at electrified solid materials is the first step toward a better understanding of important processes at such surfaces, in, e.g., electrochemistry, atmospheric chemistry, and membrane biophysics. As graphene is an interesting material with multiple potential applications such as in transistors or sensors, we specifically investigate the graphene–water interface. We use sum-frequency generation spectroscopy to investigate the pH- and potential-dependence of the interfacial water structure in contact with a chemical vapor deposited (CVD) grown graphene surface. Our results show that the SFG signal from the interfacial water molecules a…

Materials science02 engineering and technologySubstrate (electronics)010402 general chemistryElectrochemistry01 natural sciencesArticlelaw.inventionMembrane biophysicslawSum-frequency generation spectroscopyMoleculePhysical and Theoretical ChemistrySpectroscopyWater interfaceInterfacial water structureGrapheneGraphene layersInterfacial water molecules021001 nanoscience & nanotechnologyChemical vapor deposited3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical engineeringAtmospheric chemistry0210 nano-technologyMembrane biophysicsLayer (electronics)Potential dependenceThe Journal of Physical Chemistry. C, Nanomaterials and Interfaces
researchProduct

Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures

2020

This research was funded by the ERDF project “Smart Metal Oxide Nanocoatings and HIPIMS Technology”, project number: 1.1.1.1/18/A/073. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².

Materials scienceAbsorption spectroscopyNanowireGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylaw.inventionlawMonolayer:NATURAL SCIENCES:Physics [Research Subject Categories]Layered materialsElectron microscopyX-ray absorption spectroscopyReS2business.industryGrapheneX-ray absorption spectroscopyHeterojunctionSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsX-ray diffraction0104 chemical sciencesSurfaces Coatings and FilmsSemiconductorRaman spectroscopyCore-shell nanowireOptoelectronicsDirect and indirect band gaps0210 nano-technologybusinessApplied Surface Science
researchProduct

Interfacial disorder of graphene grown at high temperatures on 4H-SiC(000-1)

2016

This paper presents an investigation of the morphological and structural properties of graphene (Gr) grown on SiC(000-1) by thermal treatments at high temperatures (from 1850 to 1950 °C) in Ar at atmospheric pressure. Atomic force microscopy and micro-Raman spectroscopy showed that the grown Gr films are laterally inhomogeneous in the number of layers, and that regions with different stacking-type (coupled or decoupled Gr films) can coexist in the same sample. Scanning transmission electron microscopy and electron energy loss spectroscopy shoed that a nm-thick C-Si-O amorphous layer is present at the interface between Gr and SiC. Basing on these structural results, the mechanisms of Gr grow…

Materials scienceAnnealing (metallurgy)GrapheneMechanical EngineeringElectron energy loss spectroscopyAnalytical chemistrySTEMCondensed Matter PhysicsEpitaxylaw.inventionAmorphous solidInterfacial disordersymbols.namesakeMechanics of MaterialslawScanning transmission electron microscopysymbolsGeneral Materials ScienceAFMGrapheneSpectroscopyRaman spectroscopyC faceRaman
researchProduct

Effective low temperature reduction of graphene oxide with vanadium(iii)

2014

Reduction of graphene oxide (GO) with vanadium(III) trichloride under various reaction conditions has been investigated. The results show that V(III) can be used as an efficient reducing agent for GO in aqueous solutions at low concentrations and in moderate temperatures under ambient conditions. The IR spectroscopy and X-ray photoelectron spectroscopy (XPS) show that the structure of the vanadium-reduced material is similar to reduced graphene oxide prepared using TiCl3 or hydrazine as a reducing agent. The electrical conductivity of the material is also similar in all cases. However, on the basis of the XPS results, vanadium-based reduction does not leave significant reductant impurities …

Materials scienceAqueous solutionReducing agentGrapheneInorganic chemistryOxideInfrared spectroscopyVanadiumchemistry.chemical_elementGeneral ChemistryRedoxlaw.inventionchemistry.chemical_compoundchemistryX-ray photoelectron spectroscopylawMaterials Chemistryta116Journal of Materials Chemistry. C
researchProduct

Properties-morphology relationships in electrospun mats based on polylactic acid and graphene nanoplatelets

2018

Abstract Aligned and randomly oriented polylactic acid (PLA) biocomposite nanofiber mats filled with Graphene nanoplatelets (GnP) were prepared by electrospinning. The morphological analysis revealed the successful alignment of the fibers achieved by collecting the mats on a high-speed rotary drum. Furthermore, GnP addition on the polymeric solution leads to an increase of the viscosity with a consequent increment of the fiber diameter. Tensile tests demonstrated that the reinforcing effect of GnP when added to the PLA matrix was more than three times higher in the aligned systems if compared with the respective randomly oriented mats. DSC analysis showed that GnPs were able to slightly inc…

Materials scienceB. Mechanical propertieCeramics and Composite02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundCrystallinityPolylactic acidUltimate tensile strengthThermal stabilityA. GrapheneComposite materialThermal analysisE. Electrospinning021001 nanoscience & nanotechnologyElectrospinning0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsNanofiberA. Multifunctional compositeCeramics and CompositesBiocomposite0210 nano-technologyComposites Part A: Applied Science and Manufacturing
researchProduct

Charge transport mechanism in networks of armchair graphene nanoribbons

2020

In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) based on single ribbons. Despite great progress, reliable and reproducible fabrication of single-ribbon FETs is still a challenge that impedes applications and the understanding of the charge transport. Here, we present reproducible fabrication of armchair GNR-FETs based on a network of nanoribbons and analyze the charge transport mechanism using nine-atom wide and, in particular, five-atom-wide GNRs with unprecedented conductivity. We show formati…

Materials scienceBand gap530 Physicslcsh:MedicineFOS: Physical sciences02 engineering and technology010402 general chemistry01 natural sciencesArticlelaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:ScienceCondensed-matter physicsOhmic contactQuantum tunnellingMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGraphenelcsh:RTransistorCharge (physics)021001 nanoscience & nanotechnology530 PhysikMaterials science0104 chemical sciencesOptoelectronicslcsh:QCharge carrier0210 nano-technologybusinessGraphene nanoribbons
researchProduct