Search results for "Rare-earth"

showing 10 items of 42 documents

Comment on: Application of Raman Spectroscopy to Distinguish Metamorphic and Igneous Zircon (Xian et al., Anal. Lett. 2004, v. 37, p. 119)

2005

Abstract We critically discuss a recently proposed technique ((Xian et al. 2004)) used to distinguish igneous (i.e., magmatic) from metamorphic growth of the mineral zircon according to the intensity of the 1461 cm−1 band observed in those author's Raman spectra. The band evaluated by Xian et al. (2004) is actually due to laser‐induced photoluminescence of trace amounts of the trivalent rare earth element Er, which, as an analytical artefact, overlays the Raman spectrum when green Ar+ laser excitation is used. We demonstrate that this band is not a Raman band, and discuss why the intensity of Er3+ luminescence is not uniquely indicative of the geologic origin of a zircon crystal. The techni…

PhotoluminescenceMineralChemistryRare-earth elementBiochemistry (medical)Clinical BiochemistryAnalytical chemistryMineralogyBiochemistryAnalytical ChemistryCrystalsymbols.namesakeIgneous rockElectrochemistrysymbolsRaman spectroscopyLuminescenceSpectroscopyZirconAnalytical Letters
researchProduct

Roadmap on STIRAP applications

2019

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

PhotonAtomic Physics (physics.atom-ph)Digital storageStimulated Raman adiabatic passage02 engineering and technologyStimulated Raman adiabatic passage (STIRAP)01 natural scienceslaw.inventionPhysics - Atomic PhysicsFTIR SPECTROSCOPYstimulated Raman adiabatic passage (STIRAP)lawStereochemistryRare earthsStatistical physicsMetal ionsmolecular Rydberg statesQCparity violationPhysicseducation.field_of_studyQuantum PhysicsElectric dipole momentsCoherent population transfer021001 nanoscience & nanotechnologyCondensed Matter Physicsacoustic waves; molecular Rydberg states; nuclear coherent population transfer; parity violation; spin waves; stimulated Raman adiabatic passage (STIRAP); ultracold moleculesADIABATIC PASSAGEAtomic and Molecular Physics and OpticsChemical DynamicsMolecular beamsVIOLATING ENERGY DIFFERENCEResearch group A. Pálffy – Division C. H. KeitelStimulated emission0210 nano-technologyCoherence (physics)Experimental parametersPopulationFOS: Physical sciencesacoustic waves530spin wavesMolecular Rydberg statesELECTROMAGNETICALLY INDUCED TRANSPARENCYSINGLE PHOTONSQuantum statePhysics - Chemical Physics0103 physical sciencesUltracold moleculesSpontaneous emissionddc:530Nuclear coherent population transfer010306 general physicseducationStimulated Raman adiabatic passageChemical Physics (physics.chem-ph)Rare-earth-ion doped crystalsPhotonsQuantum opticsnuclear coherent population transferBROAD-BANDControlled manipulationsPOLAR-MOLECULESMoleculesRydberg statesLaserSuperconducting quantum circuitAcoustic wavesParity violationstimulated Raman adiabatic passage (STIRAP); ultracold molecules; parity violation; spin waves; acoustic waves; molecular Rydberg states; nuclear coherent population transferDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikultracold moleculesQuantum Physics (quant-ph)QUANTUM GASSpin waves
researchProduct

Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei

2015

Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investig…

Physicsgiant dipole resonanceIsovectorta114Nuclear Theory010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciences01 natural sciences3. Good healthNuclear physicsNuclear Theory (nucl-th)DipoleEffective mass (solid-state physics)0103 physical sciencesAtomic nucleusQuasiparticleheavy nucleiSum rule in quantum mechanics010306 general physicsRandom phase approximationNuclear ExperimentNuclear densityrare-earth elements
researchProduct

Effect of hydrothermal time on the forming specific morphology of YPO4:Eu3+ nanoparticles for dedicated luminescent applications as optical markers

2023

A way to control the desired shape and microstructure of YPO4:Eu3+ nanoparticles through the precipitation method followed by a hydrothermal treatment is reported. This method is useful for achieving very high control over the YPO4:Eu3+ formation process with the selection of appropriate synthesis parameters. In detail, the autoclave processing time allows control of the shape and size of nano-needle-shaped particles independently in both directions, as confirmed by X-ray powder diffraction, FT-IR Spectroscopy and Electron Transmission Microscopy. In order to analyse the effect of the nanoparticles’ surroundings on the excitation and relaxation processes of luminescent ions, Eu3+ ion was us…

Process Chemistry and TechnologyMaterials ChemistryCeramics and CompositesOrthophosphates Rare-earths Particles shaping Hydrothermal treatment Water adsorption Nano-needles LuminescenceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSettore CHIM/02 - Chimica Fisica
researchProduct

Radiation responses of Yb/Er-doped phosphosilicate optical fibers: hardening mechanisms related to Ce-codoping

2012

International audience; In this paper, we investigated the origins of the Ce positive influence on the radiation response of Yb/Er-doped phosphosilicate optical fibers. To this purpose, we carried out during γ-irradiations an online characterization on active optical fiber prototypes, made with different Ce concentrations and integrated in optical amplifiers. The hardening effect of Ce-codoping is highlighted, as well as some aspects related to the radiation response of the phosphosilicate host glass of the active optical fibers.

Radiation EffectsOptical Amplifiers[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Rare-Earth Elements Optical Amplifiers Radiation EffectsRare-Earth ElementsRadiation Effects.
researchProduct

Zirconium–hafnium and rare earth element signatures discriminating the effect of atmospheric fallout from hydrothermal input in volcanic lake water

2016

The geochemical behaviour of Rare Earth Elements, Zr and Hf was investigated in the thermal waters of Nevado del Ruiz volcano system. A wide range of pH, between 1.0 and 8.8, characterizes these fluids. The acidicwaters are sulphate dominatedwith different Cl/SO4 ratios. The important role of the pH and the ionic complexes for the distribution of REE, Zr a nd Hf in the aqueous phase was evidenced. The pH rules the precipitation of authigenic Fe and Al oxyhydroxides producing changes in REE, Zr, Hf amounts and strong anomalies of Cerium. The precipitation of alunite and jarosite removes LREE from the solution, changing the REE distribution in acidic waters. Y-Ho and Zr-Hf (twin pairs) have a…

Rare Earth Elements010504 meteorology & atmospheric sciencesGeochemistrychemistry.chemical_element010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationLakeRare earth elements Zirconium Hafnium CO2-rich waters Lake Aeolian inputGeochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistryPrecipitation0105 earth and related environmental sciencesgeographyZirconiumgeography.geographical_feature_categoryCO 2 -rich watersRare-earth elementGeologyAuthigenicHafniumAeolian inputVolcanochemistryZirconiumOil shaleGeologyHafnium
researchProduct

Design of Radiation-Hardened Rare-Earth Doped Amplifiers through a Coupled Experiment/Simulation Approach

2013

International audience; We present an approach coupling a limited experimental number of tests with numerical simulations regarding the design of radiation-hardened (RH) rare earth (RE)-doped fiber amplifiers. Radiation tests are done on RE-doped fiber samples in order to measure and assess the values of the principal input parameters requested by the simulation tool based on particle swarm optimization (PSO) approach. The proposed simulation procedure is validated by comparing the calculation results with the measured degradations of two amplifiers made with standard and RH RE-doped optical fibers, respectively. After validation, the numerical code is used to theoretically investigate the …

Rare-Earth ionsOptical fiberMaterials scienceoptical fiberschemistry.chemical_elementlaw.inventionErbiumlawElectronic engineeringSensitivity (control systems)FiberYtterbiumrare-earth ionsOptical FibersCouplingparticle swarm optimizationAmplifierOptique / photoniqueParticle swarm optimizationytterbiumAtomic and Molecular Physics and OpticsAmplifiers erbium optical fibers particle swarm optimization radiation effects rare-earth ions ytterbiumAmplifiersRadiation EffectserbiumchemistryParticle Swarm Optimizationoptical fiber Rare-earth ions optical amplifier radiation induced absortpion Particle swarm optimization[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonicradiation effectsErbiumSpace environment
researchProduct

ChemInform Abstract: Rare Earth Element Catalysts

2010

Rare-earth elementChemistryNanotechnologyGeneral MedicineCatalysisChemInform
researchProduct

Microanalytical methods for in-situ high-resolution analysis of rock varnish at the micrometer to nanometer scale

2015

Abstract A wide range of analytical techniques were used to investigate rock varnish from different locations (Negev, Israel; Knersvlakte, South Africa; Death Valley and Mojave Desert, California): a 200 nm-femtosecond laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS), an electron probe microanalyzer (EPMA), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy–near edge X-ray absorption fine structure spectroscopy (STXM–NEXAFS). This combination enables comprehensive high-spatial-resolution analysis of rock varnish. Femtosecond LA-ICP-MS and EPMA were used for quantitative determination of element concentrations. In-situ measurements were conducte…

Rare-earth elementDesert varnishVarnishAnalytical chemistryMineralogyGeologyElectron microprobeFocused ion beamXANESGeochemistry and Petrologyvisual_artvisual_art.visual_art_mediumSpectroscopyAbsorption (electromagnetic radiation)GeologyChemical Geology
researchProduct

Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and En…

2002

The rare earth element (REE) chemistry of Jurassic shelf seawater from western Europe (Anglo-Paris Basin) was investigated by analyzing the fish and reptile teeth deposited in shallow to deeper water (<200 m) environments. REE patterns in apatites are controlled by the host sediments. Vertebrate teeth sampled from the siliciclastic sediments (calcareous sandstones and shales) show flat shale-normalized REE patterns that reflect the dominant influence of the continental source from which the REE were derived. Carbonate deposits, protected from the clastic sources, contain fish and reptile teeth whose REE patterns reflect more accurately the REE composition of the overlying water column. The …

Rare-earth elementGeochemistryGeologyCretaceousSedimentary structuresPaleontologychemistry.chemical_compoundWater columnchemistryGeochemistry and PetrologyClastic rockCarbonateSeawaterSiliciclasticGeologyChemical Geology
researchProduct