Search results for "Rase"
showing 10 items of 4343 documents
Bacitracin and Rutin Regulate Tissue Factor Production in Inflammatory Monocytes and Acute Myeloid Leukemia Blasts
2021
Simple Summary Aberrant tissue factor (TF) expression by transformed myeloblasts and inflammatory monocytes contributes to coagulation activation in acute myeloid leukemia (AML). TF procoagulant activity (PCA) is regulated by protein disulfide isomerase (PDI), an oxidoreductase with chaperone activity, but its specific role in AML-associated TF biology is unclear. Here, we provide novel mechanistic insights into this interrelation. We show that bacitracin and rutin, two pan-inhibitors of the PDI family, prevent lipopolysaccharide (LPS)-induced monocyte TF production under inflammatory conditions and constitutive TF expression by THP1 cells and AML blasts, thus exerting promising anticoagula…
Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells
2019
Abstract Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1–mediated inactivation of HIF1α-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation …
Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis
2016
Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a ge…
Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification
2016
Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de n…
Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.
2017
ABSTRACT Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treat…
Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes
2019
Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…
Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy
2019
International audience; One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation,…
Plastic and micro-evolutionary responses of a nematode to the host immune environment
2017
9 pages; International audience; Parasitic organisms have to cope with the defences deployed by their hosts and this can be achieved adopting immune evasion strategies or optimal life history traits according to the prevailing pattern of immune-mediated mortality. Parasites often encounter variable immune environments both within and between hosts, promoting the evolution of plastic strategies instead of fixed responses. Here, we explored the plasticity and micro-evolutionary responses of immunomodulatory mechanisms and life history traits to the immune environment provided by the host, using the parasitic nematode Heligmosomoides polygyrus. To test if the parasite responds plastically to t…
Biocalcite and Carbonic Acid Activators
2017
Based on evolution of biomineralizing systems and energetic considerations, there is now compelling evidence that enzymes play a driving role in the formation of the inorganic skeletons from the simplest animals, the sponges, up to humans. Focusing on skeletons based on calcium minerals, the principle enzymes involved are the carbonic anhydrase (formation of the calcium carbonate-based skeletons of many invertebrates like the calcareous sponges, as well as deposition of the calcium carbonate bioseeds during human bone formation) and the alkaline phosphatase (providing the phosphate for bone calcium phosphate-hydroxyapatite formation). These two enzymes, both being involved in human bone for…
In vitro effects of benzalkonium chloride and prostaglandins on human meibomian gland epithelial cells
2019
Abstract Purpose Benzalkonium chloride is the most widely used preservative in ophthalmic topical solutions. The aim of this study was to investigate the influence of BAC as a single substance or as a component of several commercially available ophthalmic solutions on meibomian gland epithelial cells in vitro. Materials and methods An immortalized human meibomian gland epithelial cell line (HMGEC) was used and cells were cultured in the absence or presence of fetal bovine serum to assess cell morphology, cell proliferation, cell viability (MTS assay) and impedance sensing (ECIS) after stimulation with BAC. Further, the viability of HMGECs stimulated with BAC-containing and BAC-free bimatopr…