Search results for "RedShift"

showing 10 items of 189 documents

Recent Advances in Large-scale Structure Statistics

1997

I review the most recent redshift surveys used to probe the large scale structure of the Universe. Then I provide an overview of some of the statistical tools used to describe the galaxy distribution, trying to connect these measures with some of the statistics used in the mainstream of spatial statistics. Special topics include intensity functions, topology, and second-order statistics (2-point correlation function, K-function).

Computer scienceStatisticsElliptical galaxyAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)Spatial analysisGalaxyRedshiftPoint processTopology (chemistry)Galaxy cluster
researchProduct

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring D_A and H at z=0.57 from the Baryon Acoustic Peak in th…

2014

We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 z DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s-1 Mpc-1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to th…

Cosmology and GravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmological parametersDark matterLarge scale structure of UniverseFOS: Physical sciencesLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsExpanding universesymbols.namesakeExpansió de l'universObservacions astronòmiquesDark energyQB Astronomyobservations [Cosmology]QCComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsQB/dk/atira/pure/core/subjects/cosmologyPhysics[PHYS]Physics [physics]Distance scaleCosmologiaAngular diameter distanceFísicaAstronomy and AstrophysicsRedshiftGalaxyCosmologyBaryonQC PhysicsSpace and Planetary ScienceDark energysymbols[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawAstronomical observations
researchProduct

Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

2015

By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of th…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmiscellaneous [cosmology]01 natural sciences7. Clean energymethods: numericalSettore FIS/05 - Astronomia e Astrofisicamethods: numerical; galaxies: clusters: general; cosmology: miscellaneous0103 physical sciencesclusters: general [galaxies]010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsStar formationAstronomynumerical [methods]Astronomy and AstrophysicsCosmology: Miscellaneous; Galaxies: Clusters: General; Methods: NumericalAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSupernovagalaxies: clusters: general13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Halocosmology: miscellaneousAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case

2017

We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey, which covered an effective area of 2.38 deg2 with 20 contiguous medium-band optical filters down to F814W ≃ 24.5. Using two different configurations of  ELDAR in which we require the detection of at lea…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusactive [Galaxies][ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Continuum (design consultancy)FOS: Physical sciencesAstrophysicsSurveys01 natural sciencestechniques: photometricemission lines [Quasars]Galaxies: distances and redshiftssurveys0103 physical sciencesdistances and redshifts [Galaxies]Emission spectrumOptical filterdata analysis [Methods]010303 astronomy & astrophysicsPhysicsANÁLISE DE DADOSNumber density010308 nuclear & particles physicsphotometric [Techniques]galaxies: active – galaxies: distances and redshiftsAstronomy and AstrophysicsFilter (signal processing)Galaxies: activeAstrophysics - Astrophysics of Galaxiesmethods: data analysisGalaxyRedshiftquasars: emission linesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Pressure of the hot gas in simulations of galaxy clusters

2016

We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observa…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusgalaxies: clusters: intracluster mediumCiencias FísicasFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmethods: numerical//purl.org/becyt/ford/1 [https]Galaxy groups and clustersIntracluster medium0103 physical sciencesCluster (physics)clusters: general [galaxies]methods: numerical; galaxies: clusters: general; X-rays: galaxies: clusters; galaxies: clusters: intracluster medium010303 astronomy & astrophysicsScalingGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstronomy and Astrophysicsnumerical [methods]//purl.org/becyt/ford/1.3 [https]Function (mathematics)Redshiftgalaxies: cluster [X-rays]CLUSTERS: GENERAL -X-RAYS: GALAXIES: CLUSTERS [GALAXIES]AstronomíaSpace and Planetary Sciencegalaxies: clusters: generalclusters: intracluster medium [galaxies]X-rays: galaxies: clustersCIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Real- and redshift-space halo clustering in $f(R)$ cosmologies

2016

We present two-point correlation function statistics of the mass and the halos in the chameleon $f(R)$ modified gravity scenario using a series of large volume N-body simulations. Three distinct variations of $f(R)$ are considered (F4, F5 and F6) and compared to a fiducial $\Lambda$CDM model in the redshift range $z \in [0,1]$. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales $> 20 h^{-1} \mathrm{Mpc}$ agrees with the linear General Relativity (GR) Kaiser formula for the viable $f(R)$ models considered. We consider three halo populations cha…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matterDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsdark energy [cosmology]Correlation function (astronomy)ST/K00042X/101 natural sciencesST/H008519/10103 physical sciencesHalo effectdata analysis [methods]010303 astronomy & astrophysicsSTFCGalaxy clusterAstrophysics::Galaxy Astrophysicslarge-scale structure of Universe [cosmology]Physicstheory [cosmology]010308 nuclear & particles physicsRCUKAstronomyAstronomy and AstrophysicsST/K003267/1RedshiftGalaxygravitationSpace and Planetary ScienceHaloST/L00075X/1Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance

2015

[Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)01 natural sciencesLuminosityStatistics [Galaxies]0103 physical sciencesDark matterStatistical dispersionCluster analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxies: Statistics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Euclid preparation XIX. Impact of magnification on photometric galaxy clustering

2022

Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsshearkosmologiapower spectragalaksijoukotredshift-space distortionscosmology: theorycosmological parameterstheorydark energyAstrophysics::Galaxy Astrophysicstheory large-scale structure of Universe [cosmological parameters cosmology]theory [cosmology]massive neutrinosunified pipelineAstronomy and Astrophysics115 Astronomy Space scienceangular cross-correlationshalo-modelSpace and Planetary Science[SDU]Sciences of the Universe [physics]fotometriacosmological parametercosmic magnificationlarge-scale structure of UniversecosmologydipoleAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Black Hole Shadow Drift and Photon Ring Frequency Drift

2021

The apparent angular size of the shadow of a black hole in an expanding Universe is redshift-dependent. Since cosmological redshifts change with time - known as the redshift drift - all redshift-dependent quantities acquire a time-dependence, and a fortiori so do black hole shadows. We find a mathematical description of the black hole shadow drift and show that the amplitude of this effect is of order $10^{-16}$ per day for M87$^{\star}$. While this effect is small, we argue that its non-detection can be used to constrain the accretion rate around supermassive black holes, as well as a novel probe of the equivalence principle. If general relativity is assumed, we infer from the data obtaine…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)General relativityAstrophysics::High Energy Astrophysical PhenomenasuhteellisuusteoriaFrequency driftFOS: Physical sciencesmustat aukotGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicskosmologiaGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyavaruustutkimusfysiikkaEvent Horizon TelescopePhysicsSupermassive black holemaailmankaikkeusOrder (ring theory)Coupling (probability)varjotRedshiftBlack holeavaruusvaloAstrophysics - Cosmology and Nongalactic AstrophysicsThe Open Journal of Astrophysics
researchProduct

Near-IR Galaxy Counts and Evolution from the Wide-Field ALHAMBRA survey

2009

arxiv:0902.2403v1

Cosmology and Nongalactic Astrophysics (astro-ph.CO)LogarithmFOS: Physical sciencesAstrophysicsSurveysSquare (algebra)LuminosityPhotometry (optics)high-redshift [Galaxies]galaxies [Infrared]observations [Cosmology]Physicsphotometry [Galaxies]Cosmology: observationsGalaxies: high-redshiftGalaxies: evolutionAstronomy and AstrophysicsGalaxies: photometryH bandInfrared: galaxiesevolution [Galaxies]J bandRedshiftGalaxySpace and Planetary ScienceAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct