Search results for "Regenerative medicine"
showing 10 items of 186 documents
Management of liver failure: from transplantation to cell-based therapy
2011
The severe shortage of deceased donor organs has driven a search for alternative methods of treating liver failure. In this context, cell-based regenerative medicine is emerging as a promising interdisciplinary field of tissue repair and restoration, able to contribute to improving health in a minimally invasive fashion. Several cell types have allowed long-term survival in experimental models of liver injury, but their therapeutic potential in humans should be regarded with deep caution, because few clinical trials are currently available and the number of patients enrolled so far is too small to assess benefits versus risks. This review summarizes the current literature on the physiologi…
miR-31-5p Is a LIPUS-Mechanosensitive MicroRNA that Targets HIF-1α Signaling and Cytoskeletal Proteins
2019
The roles of low-intensity pulsed ultrasound (LIPUS) and microRNAs (miRNAs) on hMSCs commitments have already been investigated
MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation
2019
Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (…
Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible suscep…
2014
Item does not contain fulltext Bladder exstrophy-epispadias complex (BEEC), the severe end of the urorectal malformation spectrum, has a profound impact on continence as well as sexual and renal functions. It is widely accepted that for the majority of cases the genetic basis appears to be multifactorial. Here, we report the first study which utilizes genome-wide association methods to analyze a cohort comprising patients presenting the most common BEEC form, classic bladder exstrophy (CBE), to identify common variation associated with risk for isolated CBE. We employed discovery and follow-up samples comprising 218 cases/865 controls and 78 trios in total, all of European descent. Our disc…
Encapsulation of Langerhans' islets: Microtechnological developments for transplantation
2011
There is an increasing trend to apply microsystems and microfluidics to solve medical and biomedical tasks. Microfluidic modules are used to modify and manipulate cells and cell clusters for therapeutic applications. Specifically, a method and technical system for encapsulation of Langerhans' islets as an option for the future treatment of diabetes mellitus is described. Type-1 diabetes patients suffer from an absolute lack of the hormone insulin caused by an autoimmune process destroying the Langerhans' islets. One way to restore glucose-dependent insulin secretion is the transplantation of human pancreatic islet cells (85% beta cells) from cadaveric donors. However, to prevent the rejecti…
Vesiclepedia:A Compendium for Extracellular Vesicles with Continuous Community Annotation
2012
Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles.
Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems
2019
The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency an…
Regenerative Medicine as an Emergent Cluster in Tampere Region
2015
[EN]: Clusters are important for regional economies and emergent clusters are in a key position, as a means of adding more diversification to the current economic activity by involving new technologies and industries. Science-based industries may be the most promising in this regard since they are encouraged to develop and enhance the economic imaginaries of territories under the umbrella of radical innovations or in the name of broadening the current economic model based on mostly traditional industries. Regenerative medicine (RM) could be an example of these so-called emergent clusters. Regenerative medicine is highly dependent on academic research, which means that local territories must…
Extracellular Vesicles: The New Frontier of Stem Cell Regenerative Medicine?
2020
Regenerative medicine aims to repair damaged or missing cells, tissues or organs for the treatment of various diseases, poorly managed with conventional drugs and medical procedures. To date there are different approaches to obtain these results. Multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells and derived products are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote tissue and organ repair and regenera…
Artificial cartilage bio-matrix formed of hyaluronic acid and Mg2+-polyphosphate.
2016
Here we show that inorganic polyphosphate (polyP), a polyanionic metabolic regulator consisting of multiple phosphate residues linked by energy-rich phosphoanhydride bonds, is present in the synovial fluid. In a biomimetic approach, to enhance cartilage synthesis and regeneration, we prepared amorphous polyP microparticles with Mg2+ as counterions. The particles were characterised by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and Fourier transformed infrared spectroscopic (FTIR) analyses. Similar particles were obtained after addition of Mg2+ ions to a solution containing hyaluronic acid, as a major component of the synovial fluid, and soluble Na-polyP. The viscous paste-like ma…