Search results for "Regioselectivity"
showing 10 items of 298 documents
A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using dft-based reactivity indexes
2004
The regioselectivity for a series of four 1,3-dipolar cycloaddition reactions has been studied using global and local reactivity indexes. The results of the theoretical analysis suggest that for asynchronous cycloadditions associated to polar processes, the regioselectivity is consistently explained by the most favorable two-center interactions between the highest nucleophilic and electrophilic sites of the reagents.
A molecular electron density theory study of the chemo- and regioselective [3 + 2] cycloaddition reactions between trifluoroacetonitrile N-oxide and …
2018
Abstract The [3 + 2] cycloaddition (32CA) reaction between trifluoroacetonitrile N-oxide (NO 7) and 2,2,4,4-tetramethyl-3-thioxocyclobutan-1-one (THK 12) as well as the self-dimerization of NO 7 as a competitive pathway were studied within the Molecular Electron Density Theory (MEDT) using several DFT functionals together with def2-TZVP basis set. Taking CCSD(T)/TZVP activation energies as reference, among the employed functionals, just the B2PLYP-D3(BJ) one is able to portray complete predominance of 32CA reaction over self-dimerization process in excellent agreement with the experimental outcomes. Analysis of the global reactivity indices permits to characterize NO 7 and THK 12 as a stron…
Molecular Electron Density Theory Study of Fused Regioselectivity in the Intramolecular [3+2] Cycloaddition Reaction of Cyclic Nitrones
2018
A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with ketenes.
2017
The [3 + 2] cycloaddition (32CA) reaction between nitrones and ketenes has been studied within the Molecular Electron Density Theory (MEDT) at the Density Functional Theory (DFT) MPWB1K/6-311G(d,p) computational level. Analysis of the conceptual DFT reactivity indices allows the explanation of the reactivity, and the chemo- and regioselectivity experimentally observed. The particular mechanism of this 32CA reaction involving low electrophilic ketenes has been elucidated by using a bonding evolution theory (BET) study. It is determined that this reaction takes place in one kinetic step only but in a non-concerted manner since two stages are clearly identified. Indeed, the formation of the se…
Understanding the Origin of the Regioselectivity in Non-polar [3+2] Cycloaddition Reactions through the Molecular Electron Density Theory
2020
The regioselectivity in non-polar [3+2] cycloaddition (32CA) reactions has been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311G(d,p) level. To this end, the 32CA reactions of nine simplest three-atom-components (TACs) with 2-methylpropene were selected. The electronic structure of the reagents has been characterized through the Electron Localisation Function (ELF) and the Conceptual DFT. The energy profiles of the two regioisomeric reaction paths and ELF topology of the transition state structures are studied to understand the origin of the regioselectivity in these 32CA reactions. This MEDT study permits to conclude that the least electronegative X1 end atom…
A molecular electron density theory study of the Grignard reagent‐mediated regioselective direct synthesis of 1,5‐disubstituted‐1,2,3‐triazoles
2020
Understanding the regioselectivity in hetero Diels–Alder reactions. An ELF analysis of the reaction between nitrosoethylene and 1-vinylpyrrolidine
2013
[EN] The regioselectivity in the hetero Diels-Alder reaction between nitrosoethylene 1 and 1-vinylpyrrolidine 2 has been studied by a comparative ELF bonding analysis along the IRC of the endo/ortho and endo/meta regioisomeric channels at the B3LYP/6-31G*. level. Along the most favorable endo/ortho regioisomeric channel, the C-C sigma bond is first formed by coupling of two pseudoradical centers located at the most electrophilic carbon of 1 and the most nucleophilic center of 2. Formation of these relevant pseudoradical centers, which depend on the total charge transfer process along the polar reaction, and not on the approach mode of each reagent, is well characterized by analysis of the a…
Gold(I) Complexes Nuclearity in Constrained Ferrocenyl Diphosphines: Dramatic Effect in Gold‐Catalyzed Enyne Cycloisomerization
2020
International audience; Di-tert-butylated-bis(phosphino)ferrocene ligands bearing phosphino substituents R (R=phenyl, cyclohexyl, isopropyl, mesityl, or furyl) allow tuning the selective formation of Au(I) halide complexes. Thus, dinuclear linear twocoordinate, but also rare mononuclear trigonal three-coordinate and tetrahedral four-coordinate complexes were formed upon tuning of the conditions. Both Au(I) chloride and rarer Au(I) iodide complexes were synthesized, and their X-ray diffraction analysis are reported. The significance of the control of structure and nuclearity in Au(I) complexes is further illustrated herein by its strong effect on the efficiency and selectivity of gold-cataly…
A combined experimental and theoretical study of the thermal [3+2] cycloaddition of carbonyl ylides with activated alkenes
2018
International audience; 4-Benzoyl-3,5-diaryltetrahydrofuran-2,2-dicarbonitriles were first synthesized from 2,2-dicyano-3-aryloxiranes and chalcones at toluene reflux; the 4,5-cis products proved to be predominantly formed and were isolated. Whereas shortened reaction times were observed by using microwave irradiation or catalytic cuprous chloride, no significant stereoselectivity change was in general noticed. Reacting 2,2-dicyano-3-aryloxiranes with 2-cyclopentenone next afforded 3-aryl-4-oxohexahydro-1H-cyclopenta[c]furan-1,1-dicarbonitriles, and the endo stereoisomers were isolated. That no stereoselectivity change was noticed in the presence of cuprous chloride rather suggests an impac…
[3+2] Cycloaddition reaction of 1H-phosphorinium-3-olate and 1-methylphosphorinium-3-olate with methyl acrylate: A DFT study
2016
Abstract A density functional theory study was performed on the [3+2] cycloaddition (32CA) reaction of 1H-phosphorinium-3-olate and 1-methylphosphorinium-3-olate with methyl acrylate. The thermodynamic and kinetic parameters were analysed by considering the regio- and stereoisomeric pathways in gas phase and solvents. The geometries indicate that the transition states are slightly more advanced and asynchronous in ethanol. Electron localisation function topological analysis of the bonding changes along the most favourable reaction pathway associated with the 32CA reaction of 1H-phosphorinium-3-olate with methyl acrylate indicates that the reaction takes place through a two-stage one-step me…