Search results for "Regularity"

showing 10 items of 98 documents

On Noncoercive (p, q)-Equations

2021

We consider a nonlinear Dirichlet problem driven by a (p, q)-Laplace differential operator (1 < q < p). The reaction is (p - 1)-linear near +/-infinity and the problem is noncoercive. Using variational tools and truncation and comparison techniques together with critical groups, we produce five nontrivial smooth solutions all with sign information and ordered. In the particular case when q = 2, we produce a second nodal solution for a total of six nontrivial smooth solutions all with sign information.

Dirichlet problemTruncationGeneral MathematicsMathematical analysisGeneral Physics and AstronomyDifferential operator(pq)-LaplacianNonlinear systemextremal solutionsprincipal eigenvalueSettore MAT/05 - Analisi Matematicanonlinear regularityconstant sign and nodal solutionsSign (mathematics)Mathematics
researchProduct

Weak regularity of functions and sets in Asplund spaces

2006

Abstract In this paper, we study a new concept of weak regularity of functions and sets in Asplund spaces. We show that this notion includes prox-regular functions, functions whose subdifferential is weakly submonotone and amenable functions in infinite dimension. We establish also that weak regularity is equivalent to Mordukhovich regularity in finite dimension. Finally, we give characterizations of the weak regularity of epi-Lipschitzian sets in terms of their local representations.

Discrete mathematicsDimension (vector space)Applied MathematicsPartition regularityMathematics::Optimization and ControlSubderivativeAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Maximal regularity for Kolmogorov operators in L2 spaces with respect to invariant measures

2006

Abstract We prove an optimal embedding result for the domains of Kolmogorov (or degenerate hypoelliptic Ornstein–Uhlenbeck) operators in L 2 spaces with respect to invariant measures. We use an interpolation method together with optimal L 2 estimates for the space derivatives of T ( t ) f near t = 0 , where T ( t ) is the Ornstein–Uhlenbeck semigroup and f is any function in L 2 .

Discrete mathematicsPure mathematicsSemigroupApplied MathematicsGeneral MathematicsDegenerate energy levelsInvariant measureMathematics::ProbabilityDegenerate Ornstein–Uhlenbeck operatorHypoellipticityHypoelliptic operatorEmbeddingMaximal regularityInvariant (mathematics)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Singular quasilinear elliptic systems involving gradient terms

2019

Abstract In this paper we establish the existence of at least one smooth positive solution for a singular quasilinear elliptic system involving gradient terms. The approach combines the sub-supersolutions method and Schauder’s fixed point theorem.

Elliptic systemsApplied MathematicsSingular system010102 general mathematicsMathematical analysisp-LaplacianGeneral EngineeringMathematics::Analysis of PDEsFixed-point theoremGeneral MedicineFixed point01 natural sciences010101 applied mathematicsRegularityComputational MathematicsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsSub-supersolutionGeneral Economics Econometrics and FinanceAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Anti-powers in infinite words

2018

In combinatorics of words, a concatenation of $k$ consecutive equal blocks is called a power of order $k$. In this paper we take a different point of view and define an anti-power of order $k$ as a concatenation of $k$ consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. As a consequence, we show that in every aperiodic uniformly recurrent word, anti-powers of ev…

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)ConcatenationComputer Science - Formal Languages and Automata Theory68R150102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsUnavoidable regularityPosition (vector)Infinite wordAvoidability[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsOrder (group theory)Point (geometry)0101 mathematicsDiscrete Mathematics and CombinatoricMathematicsDiscrete mathematics000 Computer science knowledge general worksAnti-power010101 applied mathematicsComputational Theory and Mathematics010201 computation theory & mathematicsAperiodic graphComputer ScienceExponentPairwise comparisonCombinatorics (math.CO)SoftwareWord (group theory)Computer Science - Discrete Mathematics
researchProduct

Modeling the Dynamics of a Financial Index after a Crash

2004

Supply and demand are perhaps the most fundamental concepts in economics. In a financial market they reflects the orders of the agents to buy or sell a given asset. In turn the fluctuations of supply and demand influence the dynamics of the price of an asset, as, for example, a stock or a financial index. Therefore the dynamics of the price of an asset is affected by the actions and of the beliefs of the agents. It is known that the dynamics of the price of an asset is far from simple, Several stylized facts has been empirically discovered such as, for example, the fat tails in the return distribution and the clustered volatility. These stylized facts has been detected by considering long t…

FinanceStatistical regularityStylized factFinancial economicsbusiness.industryFinancial marketEconomicsImplied volatilityVolatility (finance)businessStock (geology)Statistical hypothesis testingSupply and demand
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

Regularity and h-polynomials of toric ideals of graphs

2020

For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of degree d d . To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O’Keefe that compares the depth and dimension of toric ideals of graphs.

Hilbert seriesBetti numberGeneral MathematicsDimension (graph theory)0102 computer and information sciencesCommutative Algebra (math.AC)01 natural sciencesRegularityCombinatoricssymbols.namesakeMathematics - Algebraic GeometryCorollaryMathematics::Algebraic GeometryGraded Betti numbers; Graphs; Hilbert series; Regularity; Toric idealsFOS: MathematicsIdeal (ring theory)13D02 13P10 13D40 14M25 05E400101 mathematicsAlgebraic Geometry (math.AG)QuotientHilbert–Poincaré seriesMathematicsSimple graphDegree (graph theory)Mathematics::Commutative AlgebraApplied Mathematics010102 general mathematicsMathematics - Commutative AlgebraSettore MAT/02 - AlgebraToric ideals010201 computation theory & mathematicsGraded Betti numbers Graphs Hilbert series Regularity Toric idealssymbolsSettore MAT/03 - GeometriaGraded Betti numbersGraphs
researchProduct

Improved Hölder regularity for strongly elliptic PDEs

2019

We establish surprising improved Schauder regularity properties for solutions to the Leray-Lions divergence type equation in the plane. The results are achieved by studying the nonlinear Beltrami equation and making use of special new relations between these two equations. In particular, we show that solutions to an autonomous Beltrami equation enjoy a quantitative improved degree of H\"older regularity, higher than what is given by the classical exponent $1/K$.

Hölder regularityGeneral MathematicsMathematics::Analysis of PDEsElliptic pdes01 natural sciencesBeltrami equationMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsComplex Variables (math.CV)Divergence (statistics)MathematicsDegree (graph theory)Mathematics - Complex VariablesPlane (geometry)Applied Mathematics010102 general mathematicsMathematical analysisQuasiconformal mappingsElliptic equations30C62 (Primary) 35J60 35B65 (Secondary)010101 applied mathematicsNonlinear systemType equationBeltrami equationExponentAnalysis of PDEs (math.AP)
researchProduct

Gradient regularity for elliptic equations in the Heisenberg group

2009

Abstract We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves an issue raised in [J.J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485–544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C 1 , α -regularity for p-harmonic functions in the Heisenberg group for …

Mathematics - Differential GeometryMathematics(all)Pure mathematicsp-LaplaceanGeneral MathematicsOperator (physics)Mathematical analysisDegenerate energy levelsHeisenberg groupWeak solutions35J60RegularityElliptic operatorMathematics - Analysis of PDEsDifferential Geometry (math.DG)Cover (topology)Euclidean geometryFOS: MathematicsHeisenberg groupExponentLinear equationAnalysis of PDEs (math.AP)MathematicsAdvances in Mathematics
researchProduct