Search results for "Regularity"

showing 10 items of 98 documents

Corners in non-equiregular sub-Riemannian manifolds

2014

We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of (G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582). As an application of our main result we complete and simplify the analysis in (R. Monti, Ann. Mat. Pura Appl. (2013)), showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth. Mathematics Subject Classification. 53C17, 49K21, 49J15.

Mathematics - Differential GeometryPure mathematicsClass (set theory)Control and Optimizationregularity of geodesicsStructure (category theory)Mathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsGEOMSub-Riemannian geometry regularity of geodesics cornersMathematics - Optimization and ControlMathematicsta111Computational mathematicsMetric Geometry (math.MG)cornerssub-riemannian geometryComputational MathematicsCorners; Regularity of geodesics; Sub-Riemannian geometry; Control and Systems Engineering; Control and Optimization; Computational MathematicsDifferential Geometry (math.DG)Mathematics Subject ClassificationOptimization and Control (math.OC)Control and Systems EngineeringMathematics::Differential GeometryAnalysis of PDEs (math.AP)
researchProduct

Regularity properties of spheres in homogeneous groups

2015

We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an alg…

Mathematics - Differential GeometryPure mathematicsGeodesicjoukot (matematiikka)General MathematicsGroup Theory (math.GR)algebra01 natural sciencessets (mathematics)Homothetic transformationMathematics - Metric Geometry0103 physical sciencesEuclidean geometryFOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)spheres0101 mathematicsMathematics28A75 22E25 53C60 53C17 26A16homogeneous groupsmatematiikkamathematicsGroup (mathematics)Applied Mathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)Lipschitz continuityAutomorphismDifferential Geometry (math.DG)regularity properties010307 mathematical physicsMathematics - Group TheoryMathematics (all); Applied Mathematics
researchProduct

Superlinear (p(z), q(z))-equations

2017

AbstractWe consider Dirichlet boundary value problems for equations involving the (p(z), q(z))-Laplacian operator in the principal part and prove the existence of one and three nontrivial weak solutions, respectively. Here, the nonlinearity in the reaction term is allowed to depend on the solution, but does not satisfy the Ambrosetti–Rabinowitz condition. The hypotheses on the reaction term ensure that the Euler–Lagrange functional, associated to the problem, satisfies both the -condition and a mountain pass geometry.

Mathematics::Analysis of PDEs01 natural sciencesDirichlet distributionsymbols.namesakeSettore MAT/05 - Analisi MatematicaBoundary value problemMountain pass0101 mathematicsMathematicsNumerical Analysisgeographygeography.geographical_feature_category (p(z)q(z))-Laplacian operatorApplied MathematicsWeak solutionOperator (physics)010102 general mathematicsMathematical analysisweak solutionTerm (time)010101 applied mathematicsComputational MathematicsNonlinear system(Cc)-condition(p(z)critical groupsymbolsnonlinear regularityPrincipal partAnalysisComplex Variables and Elliptic Equations
researchProduct

Regularity of some method of summation for double sequences

2010

Some generalization of Toeplitz method of summation is introduced for double sequences and condition of regularity of it is obtained.

Mathematics::Functional AnalysisMathematics::Operator AlgebrasToeplitz method of summationlcsh:MathematicsDouble sequenceslcsh:QA1-939Method of summationConditions of regularity.Le Matematiche
researchProduct

Nonlinear Robin problems with unilateral constraints and dependence on the gradient

2018

We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.

Mathematics::Functional Analysisfixed pointSettore MAT/05 - Analisi Matematicalcsh:Mathematicsp-LaplacianMathematics::Analysis of PDEsnonlinear regularityconvection termRobin boundary conditionlcsh:QA1-939maximal monotone mapsubdifferential termElectronic Journal of Differential Equations
researchProduct

Positive solutions for parametric singular Dirichlet (p,q)-equations

2020

We consider a nonlinear elliptic Dirichlet problem driven by the (p,q)-Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f(z,x) which is (p-1)-linear as x goes to + infinity. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter lambda>0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u*_lambda and investigate the monotonicity and continuity properties of the map lambda --> u*_lambda.

Minimal solutionSettore MAT/05 - Analisi MatematicaNonlinear maximum principleBifurcation-type theoremSolution multifunctionNonlinear regularity
researchProduct

Pairs of nontrivial smooth solutions for nonlinear Neumann problems

2020

Abstract We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a reaction term that exhibits strong resonance at infinity. Using variational tools based on the critical point theory, we prove the existence of two nontrivial smooth solutions.

Nonlinear systemStrong resonanceSettore MAT/05 - Analisi MatematicaApplied MathematicsC_c-conditionMathematical analysisNeumann boundary conditionDifferential operatorCritical point (mathematics)Second deformation theoremMathematicsNonlinear regularity
researchProduct

Approximation of plurisubharmonic functions

2015

We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

Numerical AnalysisPure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Type (model theory)01 natural sciences010101 applied mathematicsComputational Mathematicsboundary regularityMergelyan type approximationcontinuous boundaryplurisubharmonic functions0101 mathematicsapproximationAnalysisMathematicsComplex Variables and Elliptic Equations
researchProduct

Nonlinear concave-convex problems with indefinite weight

2021

We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.

Numerical AnalysisPure mathematicslocal minimizerspositive solutionsNehari manifoldApplied MathematicsRegular polygonLagrange multiplierComputational MathematicsNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularityAnalysisMathematics
researchProduct

On the regularity of critical and minimal sets of a free interface problem

2015

We study a free interface problem of finding the optimal energy configuration for mixtures of two conducting materials with an additional perimeter penalization of the interface. We employ the regularity theory of linear elliptic equations to study the possible opening angles of Taylor cones and to give a different proof of a partial regularity result by Fan Hua Lin [Calc Var. Partial Differential Equations, 1993].

PhysicsRegularity of minimal surfacesInterface (Java)Applied Mathematicsta111010102 general mathematicsMathematical analysisFree interfaceConical surface01 natural sciences010305 fluids & plasmasMathematics - Analysis of PDEsFree interface0103 physical sciencesFOS: MathematicsTaylor cones0101 mathematicsEnergy (signal processing)49Q10 49N60 74G40Analysis of PDEs (math.AP)
researchProduct