Search results for "Regularity"

showing 10 items of 98 documents

Erratum to “Irregularity” [Topology Appl. 154 (8) (2007) 1565–1580]

2012

[2, Proposition 4.4] states that each regular pretopology is topologically regular. Professor F. Mynard (Georgia Southern University) advised the authors that he was not convinced by the proof of that proposition, which enabled us to realize the proposition is wrong, as the example below shows. Recall that (e.g., [2]) a pretopology ξ on a set X is called regular if Vξ (x)⊂ adh ξ Vξ (x) (respectively, topologically regular if Vξ (x)⊂ cl ξ Vξ (x)) for every x ∈ X . As a consequence, in the sequel of [2], regular should be read topologically regular in a few instances, in particular in [2, Theorem 4.6]. [2, Proposition 4.4] is also quoted in [3], where it is used in some reformulations of clas…

RegularityReflection (mathematics)PretopologyExistential quantificationConvergence spacePropositionContext (language use)Geometry and TopologyTopologyTopology (chemistry)MathematicsTopology and its Applications
researchProduct

Multiple solutions with sign information for a (p,2)-equation with combined nonlinearities

2020

We consider a parametric nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a Laplacian (a (p,2)-equation) and with a reaction which has the competing effects of two distinct nonlinearities. A parametric term which is (p−1)-superlinear (convex term) and a perturbation which is (p−1)-sublinear (concave term). First we show that for all small values of the parameter the problem has at least five nontrivial smooth solutions, all with sign information. Then by strengthening the regularity of the two nonlinearities we produce two more nodal solutions, for a total of seven nontrivial smooth solutions all with sign informations. Our proofs use critical point theory, critical gro…

Settore MAT/05 - Analisi MatematicaConstant sign and nodal solutionFlow invarianceConvex–concave problemStrong comparison principleCritical groupNonlinear regularity
researchProduct

Positive and nodal solutions for nonlinear nonhomogeneous parametric neumann problems

2020

We consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter λ > 0. We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution.

Settore MAT/05 - Analisi MatematicaNonlinear maximum principleStrong comparisonNodal solutionNonlinear nonhomogeneous differential operatorBifurcation-type theoremCritical groupNonlinear regularity theory
researchProduct

A Lebesgue-type decomposition on one side for sesquilinear forms

2021

Sesquilinear forms which are not necessarily positive may have a dierent behavior, with respect to a positive form, on each side. For this reason a Lebesgue-type decomposition on one side is provided for generic forms satisfying a boundedness condition.

Settore MAT/05 - Analisi Matematicasesquilinear forms Lebesgue decomposition regularity singularity complex measures bounded operators
researchProduct

$L_2$-variation of L\'{e}vy driven BSDEs with non-smooth terminal conditions

2016

We consider the $L_2$-regularity of solutions to backward stochastic differential equations (BSDEs) with Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a L\'{e}vy process $(X_t)_{t\in[0,T]}$. The terminal condition may be a Borel function of finitely many increments of the L\'{e}vy process which is not necessarily Lipschitz but only satisfies a fractional smoothness condition. The results are obtained by investigating how the special structure appearing in the chaos expansion of the terminal condition is inherited by the solution to the BSDE.

Statistics and Probability$L_{2}$-regularityPure mathematicsSmoothness (probability theory)Malliavin calculus010102 general mathematicsChaos expansionPoisson random measureFunction (mathematics)Lipschitz continuityMalliavin calculus01 natural sciencesLévy process010104 statistics & probabilityStochastic differential equationMathematics::ProbabilityLévy processesbackward stochastic differential equations0101 mathematicsL 2 -regularityBrownian motionMathematics - ProbabilityMathematics
researchProduct

Block Based Deconvolution Algorithm Using Spline Wavelet Packets

2010

This paper presents robust algorithms to deconvolve discrete noised signals and images. The idea behind the algorithms is to solve the convolution equation separately in different frequency bands. This is achieved by using spline wavelet packets. The solutions are derived as linear combinations of the wavelet packets that minimize some parameterized quadratic functionals. Parameters choice, which is performed automatically, determines the trade-off between the solution regularity and the initial data approximation. This technique, which id called Spline Harmonic Analysis, provides a unified computational scheme for the design of orthonormal spline wavelet packets, fast implementation of the…

Statistics and ProbabilityApplied MathematicsSpline waveletCondensed Matter PhysicsDeconvolution · Wavelet packet · Spline · RegularityWavelet packet decompositionSpline (mathematics)Quadratic equationModeling and SimulationOrthonormal basisGeometry and TopologyComputer Vision and Pattern RecognitionDeconvolutionThin plate splineLinear combinationAlgorithmMathematics
researchProduct

Uniform measure density condition and game regularity for tug-of-war games

2018

We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed

Statistics and ProbabilityIndependent and identically distributed random variablesComputer Science::Computer Science and Game Theorygame regularitydensity estimate for the sum of i.i.d. random vectorsTug of war01 natural sciencesMeasure (mathematics)$p$-regularityMathematics - Analysis of PDEsFOS: MathematicsApplied mathematicspeliteoriastochastic games0101 mathematics91A15 60G50 35J92Mathematicsp-harmonic functionsstokastiset prosessit$p$-harmonic functionsosittaisdifferentiaaliyhtälöthitting probability010102 general mathematicsStochastic gametug-of-war gamesProbability (math.PR)uniform measure density condition010101 applied mathematicsNoiseuniform distribution in a ballMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Nonlinear Nonhomogeneous Elliptic Problems

2019

We consider nonlinear elliptic equations driven by a nonhomogeneous differential operator plus an indefinite potential. The boundary condition is either Dirichlet or Robin (including as a special case the Neumann problem). First we present the corresponding regularity theory (up to the boundary). Then we develop the nonlinear maximum principle and present some important nonlinear strong comparison principles. Subsequently we see how these results together with variational methods, truncation and perturbation techniques, and Morse theory (critical groups) can be used to analyze different classes of elliptic equations. Special attention is given to (p, 2)-equations (these are equations driven…

Strong comparison principles(p 2)-equationsMultiplicity theoremsNodal solutionsDifferential operatorDirichlet distributionNonlinear systemsymbols.namesakeMaximum principleSettore MAT/05 - Analisi MatematicaNeumann boundary conditionsymbolsApplied mathematicsBoundary value problemNonlinear maximum principleLaplace operatorNonlinear regularityMorse theoryMathematics
researchProduct

Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems

2017

We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…

Sublinear functionMonotonic functionLambda01 natural sciencesOmegaDirichlet distributionsymbols.namesakeFirst eigenvalueP-LaplacianUniqueness0101 mathematicsEigenvalues and eigenvectorsMathematical physicsNonlinear regularityPhysicsApplied Mathematics010102 general mathematicsMathematical analysisVariational methodAnalysiFirst eigenvalue; Generalized picone's identity; Nonlinear maximum principle; Nonlinear regularity; P-Laplacian; Variational methods; Analysis; Applied MathematicsGeneral Medicine010101 applied mathematicsp-LaplaciansymbolsNonlinear maximum principleGeneralized picone's identityAnalysis
researchProduct

Singular Neumann (p, q)-equations

2019

We consider a nonlinear parametric Neumann problem driven by the sum of a p-Laplacian and of a q-Laplacian and exhibiting in the reaction the competing effects of a singular term and of a resonant term. Using variational methods together with suitable truncation and comparison techniques, we show that for small values of the parameter the problem has at least two positive smooth solutions.

TruncationGeneral MathematicsResonant nonlinearity0211 other engineering and technologies02 engineering and technology01 natural sciencesPotential theoryTruncation and comparisonTheoretical Computer ScienceSettore MAT/05 - Analisi MatematicaNeumann boundary conditionApplied mathematics0101 mathematics(p q)-equationNonlinear regularityMathematicsParametric statistics021103 operations research010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryOperator theoryTerm (time)Nonlinear systemNonlinear strong maximum principleAnalysisPositivity
researchProduct