Search results for "Reverse"

showing 10 items of 1361 documents

Telomeres and Telomerase During Human Papillomavirus-Induced Carcinogenesis

2018

Human papillomaviruses (HPVs) belong to a small spherical virus family and are transmitted through direct contact, most often through sexual behavior. More than 200 types of HPV are known, a dozen or so of which are classified as high-risk viruses (HR HPV) and may contribute to the development of cervical cancer. HPV is a small virus with a capsid composed of L1 and L2 proteins, which are crucial for entry to the cell. The infection begins at the basal cell layer and progresses to involve cells from higher layers of the cervical epithelium. E6 and E7 viral proteins are involved in the process of carcinogenesis. They interact with suppressors of oncogenesis, including p53 and Rb proteins. Th…

0301 basic medicineTelomeraseOncogene ProteinsCarcinogenesisCellReview ArticleBiologymedicine.disease_causeRetinoblastoma ProteinVirus03 medical and health sciences0302 clinical medicineGeneticsmedicineHumansTelomerase reverse transcriptasePapillomaviridaeTelomeraseTelomere ShorteningPharmacologyPapillomavirus InfectionsDNA replicationGeneral MedicineOncogene Proteins ViralVirus InternalizationCell Transformation ViralTelomere030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisCancer researchDisease ProgressionMolecular MedicineRNAFemaleTumor Suppressor Protein p53CarcinogenesisMolecular Diagnosis & Therapy
researchProduct

Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

2016

Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others…

0301 basic medicineThreonineHeredityMethyl-CpG-Binding Protein 2Genetic LinkageMutantFluorescent Antibody TechniqueSocial Scienceslcsh:MedicinePC12 CellsBiochemistryEpitopeImmunoenzyme TechniquesCell FusionNeuroblastomaFluorescence MicroscopyAnimal CellsMedicine and Health SciencesPsychologyPost-Translational ModificationPhosphorylationAmino Acidslcsh:ScienceCells CulturedCross ReactivityNeuronsStainingMicroscopyMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionOrganic CompoundsCell StainingLight MicroscopyTransfectionChemistryX-Linked TraitsSex LinkagePhysical SciencesCellular TypesResearch ArticleCell signalingCell Physiologycongenital hereditary and neonatal diseases and abnormalitiesBlotting WesternImmunologyRett syndromeBiologyReal-Time Polymerase Chain ReactionResearch and Analysis MethodsMECP203 medical and health sciencesNeurologiaAntigenHydroxyl Amino Acidsmental disordersmedicineRett SyndromeGeneticsAnimalsHumansRNA MessengerClinical GeneticsHEK 293 cellsOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsCell Biologymedicine.diseaseMolecular biologyRatsnervous system diseases030104 developmental biologyHEK293 CellsSpecimen Preparation and TreatmentCellular NeuroscienceMutationDevelopmental PsychologyMalaltieslcsh:QNeuroscience
researchProduct

MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression.

2018

The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542…

0301 basic medicineUntranslated regionSmall interfering RNAPhysiologymetabolism [Microtubule Proteins]Alzheimer's DiseaseBiochemistryImmune PhysiologyMedicine and Health SciencesSmall interfering RNAsmetabolism [Transcription Factors]3' Untranslated RegionsImmune System ProteinsMultidisciplinarybiologyReverse Transcriptase Polymerase Chain ReactionMessenger RNAQRNuclear ProteinsNeurodegenerative DiseasesTranslation (biology)EnzymesUbiquitin ligaseCell biologyNucleic acidsNeurologyMicrotubule ProteinsMedicineOxidoreductasesLuciferasemetabolism [Nuclear Proteins]Research ArticleScienceUbiquitin-Protein LigasesImmunologyTransfectionResearch and Analysis MethodsReal-Time Polymerase Chain ReactionAntibodies03 medical and health sciencesMental Health and PsychiatrymicroRNAGeneticsHumansddc:610Non-coding RNAMolecular Biology TechniquesMolecular BiologyMessenger RNABiology and life sciencesThree prime untranslated regionHEK 293 cellsProteinsGene regulationphysiology [MicroRNAs]MicroRNAs030104 developmental biologyHEK293 CellsEnzymologybiology.proteinRNAProtein TranslationDementiaGene expressionTranscription FactorsMid1 protein human
researchProduct

Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

2016

Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brai…

0301 basic medicineUntranslated regionTranscription GeneticCDKL5lcsh:MedicineGene ExpressionArtificial Gene Amplification and ExtensionPolymerase Chain ReactionBiochemistryExonMice0302 clinical medicineCoding regionProtein Isoformslcsh:ScienceGeneticsRegulation of gene expressionMultidisciplinaryMammalian GenomicsHigh-Throughput Nucleotide SequencingExonsGenomicsNucleic acidsRNA isolationPhenotypeSpasms InfantileResearch ArticleGene isoformBiologyProtein Serine-Threonine KinasesPolyadenylationResearch and Analysis MethodsBiomolecular isolation03 medical and health sciencesGeneticsAnimalsHumansAdultsAmino Acid SequenceMolecular Biology TechniquesGeneMolecular BiologyAlternative splicinglcsh:RGene MappingInfant NewbornBiology and Life SciencesReverse Transcriptase-Polymerase Chain ReactionAlternative Splicing030104 developmental biologyGene Expression RegulationRNA processingAge GroupsAnimal GenomicsMutationPeople and PlacesExon MappingRNAlcsh:QPopulation Groupings030217 neurology & neurosurgeryPloS one
researchProduct

Differential long non-coding RNA expression profiles in human oocytes and cumulus cells

2018

AbstractProgress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1). These data were validated by RT-qPCR analysis using independent oocytes and CC samples. The functions of the identified lncRNAs were then predicted by constructing lncRNA-mRNA co…

0301 basic medicine[SDV]Life Sciences [q-bio]lcsh:MedicineReproductive technologyBiologyReal-Time Polymerase Chain ReactionArticleChromatin remodeling03 medical and health sciencesmedicineHumanslcsh:ScienceGeneMetaphaseMEG3MALAT1Cumulus CellsMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionGene Expression Profilinglcsh:RComputational BiologyOocyteLong non-coding RNACell biology[SDV] Life Sciences [q-bio]Gene expression profiling030104 developmental biologymedicine.anatomical_structureOocytesRNA Long Noncodinglcsh:Q
researchProduct

Synergistic Anti-Human Immunodeficiency Viral (HIV-1) Effect of the Immunomodulator Ampligen (Mismatched Double-Stranded RNA) with Inhibitors of Reve…

1993

The potent antiviral effect of double stranded RNA, such as the mismatched poly(l)·poly(C12U) [Ampligen], 2′,3′-dideoxy-3′-fluorothymidine (FddThd) and antisense oligodeoxynucleotides (ODN) has been established in in vitro systems using cells infected with the human immunodeficiency virus type 1 (HIV-1). We report here that the immunomodulator poly(l)·poly(C12U) interacts synergistically with (1) the reverse transcriptase inhibitor FddThd (FIC value: 0.43), (2) the modified (5′- and 3′-end capped thioates) antisense ODN-4 directed against the splice acceptor site of the HIV-1/ tat gene (FIC value: 0.66) and (3) also with pyronin Y, a compound which prevents binding of HIV-1 Rev protein to t…

0301 basic medicinechemistry.chemical_classificationReverse-transcriptase inhibitor030106 microbiologyRNAGeneral MedicineBiologyNucleotidyltransferase01 natural sciencesVirologyMolecular biologyIn vitroReverse transcriptaseVirus0104 chemical sciences010404 medicinal & biomolecular chemistry03 medical and health sciencesEnzymechemistrymedicineGenemedicine.drugAntiviral Chemistry and Chemotherapy
researchProduct

NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved.

2021

Due to the improved effectiveness and safety of combined antiretroviral therapy, human immunodeficiency virus (HIV) infection has become a manageable, chronic condition rather than a mortal disease. However, HIV patients are at increased risk of experiencing non-AIDS-defining illnesses, with liver-related injury standing out as one of the leading causes of death among these patients. In addition to more HIV-specific processes, such as antiretroviral drug-related toxicity and direct injury to the liver by the virus itself, its pathogenesis is related to conditions that are also common in the general population, such as alcoholic and non-alcoholic fatty liver disease, viral hepatitis, and age…

0301 basic medicinehepatotoxicityNevirapineEfavirenzQH301-705.5030106 microbiologyEtravirinecARTReviewBioinformaticsliver03 medical and health scienceschemistry.chemical_compoundLiver disease0302 clinical medicineDoravirinemedicineAnimalsHumans030212 general & internal medicineBiology (General)antiretroviral drugsbusiness.industryFatty livervirus diseasesHIVGeneral Medicinemedicine.diseasechemistryRilpivirineChronic DiseaseReverse Transcriptase InhibitorsDrug Therapy CombinationDILIChemical and Drug Induced Liver InjuryViral hepatitisbusinessmedicine.drugCells
researchProduct

Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses

2017

The current literature reveals that the intrathalline coexistence of multiple microalgal taxa in lichens is more common than previously thought, and additional complexity is supported by the coexistence of bacteria and basidiomycete yeasts in lichen thalli. This replaces the old paradigm that lichen symbiosis occurs between a fungus and a single photobiont. The lichen Ramalina farinacea has proven to be a suitable model to study the multiplicity of microalgae in lichen thalli due to the constant coexistence of Trebouxia sp. TR9 and T. jamesii in long-distance populations. To date, studies involving phycobiont diversity within entire thalli are based on Sanger sequencing, but this method see…

0301 basic medicinelcsh:MedicineLichenologyArtificial Gene Amplification and ExtensionPlant SciencePolymerase Chain ReactionDatabase and Informatics MethodsDiversity indexMicroalgaeCluster AnalysisDNA Fungallcsh:ScienceLichenPhylogenyData ManagementMultidisciplinaryEcologybiologyEcologyPhylogenetic AnalysisBiodiversitysymbiosisThallusPhylogeneticspyrosequencingLichenologyTrebouxiaSequence AnalysisResearch ArticleTrebouxiaComputer and Information SciencesBioinformaticsSequence DatabasesReal-Time Polymerase Chain ReactionResearch and Analysis MethodslichenRamalina farinacea03 medical and health sciencesAscomycotaAlgaelichen photobionts pyrosequencing symbiosis TrebouxiaBotanyEvolutionary SystematicsMolecular Biology TechniquesMolecular BiologyDNA sequence analysisTaxonomyEvolutionary BiologyEcology and Environmental Scienceslcsh:RGenetic VariationBiology and Life SciencesSequence Analysis DNAReverse Transcriptase-Polymerase Chain Reactionbiology.organism_classificationBiological Databases030104 developmental biologyphotobiontsPyrosequencinglcsh:QSequence AlignmentPLOS ONE
researchProduct

Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies

2019

New analytics of post-transcriptional RNA modifications have paved the way for a tremendous upswing of the biological and biomedical research in this field. This especially applies to methods that included RNA-Seq techniques, and which typically result in what is termed global scale modification mapping. In this process, positions inside a cell`s transcriptome are receiving a status of potential modification sites (so called modification calling), typically based on a score of some kind that issues from the particular method applied. The resulting data are thought to represent information that goes beyond what is contained in typical transcriptome data, and hence the field has taken to use …

0301 basic medicinelcsh:QH426-470Computer scienceProcess (engineering)Emerging technologieschemical treatmentNext Generation Sequencingengineered Reverse Transcriptase enzymesRNA-SeqReviewcomputer.software_genreDeep sequencingField (computer science)deep sequencing03 medical and health sciences0302 clinical medicineepitranscriptome[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsAnimalsHumansRNA-SeqRNA Processing Post-TranscriptionalComputingMilieux_MISCELLANEOUSGenetics (clinical)Sequence Analysis RNAbusiness.industryScale (chemistry)High-Throughput Nucleotide Sequencing[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyRNA modificationTerm (time)lcsh:Genetics030104 developmental biologyAnalyticsRNAData miningbusinesscomputer030217 neurology & neurosurgeryGenes
researchProduct

Manganese Ions Individually Alter the Reverse Transcription Signature of Modified Ribonucleosides

2020

Reverse transcription of RNA templates containing modified ribonucleosides transfers modification-related information as misincorporations, arrest or nucleotide skipping events to the newly synthesized cDNA strand. The frequency and proportion of these events, merged from all sequenced cDNAs, yield a so-called RT signature, characteristic for the respective RNA modification and reverse transcriptase (RT). While known for DNA polymerases in so-called error-prone PCR, testing of four different RTs by replacing Mg2+ with Mn2+ in reaction buffer revealed the immense influence of manganese chloride on derived RT signatures, with arrest rates on m1A positions dropping from 82% down to 24%. Additi…

0301 basic medicinelcsh:QH426-470DNA polymerasechemistry.chemical_elementManganeseSaccharomyces cerevisiaeRT signature[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology01 natural sciencesArticle03 medical and health sciencesm1ARNA modificationsComplementary DNA[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsNucleotidem<sup>1</sup>ABase PairingGenetics (clinical)PolymeraseComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationIonsManganesebiology010405 organic chemistryRNARNA-Directed DNA Polymerase[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyreverse transcriptionMolecular biologyReverse transcriptase0104 chemical scienceslcsh:Genetics030104 developmental biologyTemplatechemistrybiology.proteinRNA[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Ribonucleosidesmanganese chloride
researchProduct