Search results for "Rey"
showing 10 items of 639 documents
A New Systematic Series of Foil Sections with Parallel Sides
2020
Parallel-sided foil sections are used for centerboards and rudders in sailing dinghy classes and also for struts placed in a fluid flow. The objective of this work is to create a systematic series of parallel-sided sections to be used under different conditions, with an emphasis on the sailing dinghies 470, 420 and Optimist. The loss, and surprisingly the gain, in performance relative to 4-digit NACA sections are also investigated. A 2D Reynolds-averaged Navier&ndash
Slope threshold in rill flow resistance
2022
The applicability of a theoretical rill flow resistance equation, based on the integration of a power velocity distribution, was tested using measurements carried out in mobile and fixed bed rills, shaped on plots having different slopes (9, 14, 15, 18, 22, 24, 25 and 26%) and soil textures (clay fractions ranging from 32.7% to 73% and silt of 19.9–30.9%), and flume measurements available in the literature. The Darcy–Weisbach friction factor resulted dependent on the slope, Froude number, Reynolds number and clay and silt percentages, used as variables representative of soil transportability and detachability, respectively. This theoretical approach was applied to two different databases di…
Flow Resistance Law in Channels with Flexible Submerged Vegetation
2005
In this paper, experimental data collected in a straight flume having a bed covered by grasslike vegetation have been used to analyze flow resistance for flexible submerged elements. At first, the measurements are used to test the applicability of Kouwen’s method. Then, a calibration of two coefficients appearing in the semilogarithmic flow resistance equation is carried out. Finally, applying the P-theorem and the incomplete self-similarity condition, a flow resistance equation linking the friction factor with the shear Reynolds number, the depth-vegetation height ratio and the inflection degree is deduced.
Penetration efficiency of nanometer-sized aerosol particles in tubes under turbulent flow conditions
2012
Abstract In order to quantify losses of nanometer-sized particles in turbulent flows through tubes, their penetration efficiencies were measured as a function of the particle size, Stokes number and Reynolds number. The penetration efficiency of tungsten oxide and ammonium nitrate particles with diameters between 3 and 17 nm was investigated in turbulent flow conditions with Reynolds numbers (Re) extending from 4500 to 10,500. The measured penetration efficiencies in straight tubes were found to deviate from the empirical correlation of Lee and Gieseke (1994) . In contrast, the empirical equation of Fan and Ahmadi (1993) agrees better with our experimental results, also in comparison with t…
Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations
1996
An experimental and numerical study of flow and heat transfer was conducted for a crossed-corrugated geometry, representative of compact heat exchangers under transitional and weakly turbulent conditions. Three-dimensional numerical predictions were obtained by a finite volume method using a variety of approaches ranging from laminar flow assumptions to standard and low-Reynolds number k-e turbulence models, direct simulation, and large-eddy simulation. In this paper, the various computational approaches are presented and their relative performance is discussed for various geometries and Reynolds numbers; results are compared with experimental measurements and literature data. Detailed expe…
Effects of irregular two-dimensional and three-dimensional surface roughness in turbulent channel flows
2012
Abstract Wall-resolved Large Eddy Simulation of fully developed turbulent channel flows over two different rough surfaces is performed to investigate on the effects of irregular 2D and 3D roughness on the turbulence. The two geometries are obtained through the superimposition of sinusoidal functions having random amplitudes and different wave lengths. In the 2D configuration the irregular shape in the longitudinal direction is replicated in the transverse one, while in the 3D case the sinusoidal functions are generated both in streamwise and spanwise directions. Both channel walls are roughened in such a way as to obtain surfaces with statistically equivalent roughness height, but different…
Active mixing inside double emulsion segments in continuous flow
2015
Fast mixing is essential for many microfluidic applications, especially for flow at low Reynolds numbers. A capillary tube-in-tube coaxial flow setup in combination with a glass microreactor was used to produce immiscible multiphase segments. These double emulsion segments are composed of an organic solvent as the shell (outer) phase and a completely fluorinated liquid (Fluorinert® FC-40) as the core (inner) phase. Due to the higher density of the core droplets, they are responsive to changing their position to the force of gravity (g-force). By gently shaking or jiggling the reactor, the core drop flows very fast in the direction of the g-field without leaving the shell organic phase segme…
Three-dimensional linear stability analysis of the flow in a liquid spherical droplet driven by an alternating magnetic field
2003
The paper presents a numerical stability analysis of the flow driven by an alternating (AC) magnetic field in an electromagnetically levitated liquid metal droplet. The basic axisymmetric flow is found to become unstable at Reynolds numbers in the order of 100. The critical Reynolds number Rec and the corresponding most unstable azimuthal wave number m are found for several configurations of the magnetic field depending on the skin-depth d. For a uniform external AC magnetic field the azimuthal wave number of the most unstable mode is m=3. An additional steady (DC) magnetic field imposed along the axis of symmetry increases the stability of the flow.
Route to chaos in the weakly stratified Kolmogorov flow
2019
We consider a two-dimensional fluid exposed to Kolmogorov’s forcing cos(ny) and heated from above. The stabilizing effects of temperature are taken into account using the Boussinesq approximation. The fluid with no temperature stratification has been widely studied and, although relying on strong simplifications, it is considered an important tool for the theoretical and experimental study of transition to turbulence. In this paper, we are interested in the set of transitions leading the temperature stratified fluid from the laminar solution [U∝cos(ny),0, T ∝ y] to more complex states until the onset of chaotic states. We will consider Reynolds numbers 0 < Re ≤ 30, while the Richardson numb…
CFD prediction of shell-side flow and mass transfer in regular fiber arrays
2021
Numerical simulations were conducted for fully developed, steady-state flow with mass transfer in fiber bundles arranged in regular lattices. The porosity was 0.5 and the Schmidt number 500. Several combinations of axial flow, transverse flow and flow attack angles in the cross-section plane were considered. The axial and transverse Reynolds numbers Rez , ReT were made to vary from 10(^−4) to 10(^2). Concentration boundary conditions, and the definition of an average Sherwood number, were addressed. Results for the hydraulic permeability were compared with the literature. Both hexagonal and square lattices were found to be hydraulically almost isotropic up to transverse flow Reynolds number…